Properties

Label 4.2e4_1289.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 1289 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$20624= 2^{4} \cdot 1289 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} + 39 x^{3} - 36 x^{2} - 37 x + 20 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.1289.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 24 + \left(3 a + 2\right)\cdot 29 + \left(11 a + 13\right)\cdot 29^{2} + \left(14 a + 19\right)\cdot 29^{3} + \left(27 a + 7\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 1 + \left(11 a + 22\right)\cdot 29 + \left(11 a + 15\right)\cdot 29^{2} + \left(26 a + 25\right)\cdot 29^{3} + 24 a\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 + 18\cdot 29 + 8\cdot 29^{2} + 16\cdot 29^{3} + 6\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 26 + \left(25 a + 7\right)\cdot 29 + \left(17 a + 7\right)\cdot 29^{2} + \left(14 a + 22\right)\cdot 29^{3} + \left(a + 14\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 + 5\cdot 29 + 10\cdot 29^{2} + 2\cdot 29^{3} + 16\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 19 + \left(17 a + 1\right)\cdot 29 + \left(17 a + 3\right)\cdot 29^{2} + \left(2 a + 1\right)\cdot 29^{3} + \left(4 a + 12\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,5)$
$(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$2$
$6$$2$$(1,3)$$0$
$9$$2$$(1,3)(2,5)$$0$
$4$$3$$(1,3,4)(2,5,6)$$1$
$4$$3$$(1,3,4)$$-2$
$18$$4$$(1,5,3,2)(4,6)$$0$
$12$$6$$(1,5,3,6,4,2)$$-1$
$12$$6$$(1,3)(2,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.