Properties

Label 4.2e4_11e3_17e2.5t5.1c1
Dimension 4
Group $S_5$
Conductor $ 2^{4} \cdot 11^{3} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$6154544= 2^{4} \cdot 11^{3} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 2 x^{3} + 2 x^{2} - 11 x + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd
Determinant: 1.11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 15 + 35\cdot 37 + \left(18 a + 13\right)\cdot 37^{2} + \left(7 a + 24\right)\cdot 37^{3} + \left(28 a + 30\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 2 + \left(9 a + 9\right)\cdot 37 + \left(33 a + 29\right)\cdot 37^{2} + \left(14 a + 14\right)\cdot 37^{3} + \left(15 a + 28\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 a + 30 + \left(36 a + 23\right)\cdot 37 + \left(18 a + 11\right)\cdot 37^{2} + \left(29 a + 36\right)\cdot 37^{3} + \left(8 a + 24\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 + 19\cdot 37 + 14\cdot 37^{2} + 31\cdot 37^{3} + 25\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 24 + \left(27 a + 23\right)\cdot 37 + \left(3 a + 4\right)\cdot 37^{2} + \left(22 a + 4\right)\cdot 37^{3} + \left(21 a + 1\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.