Properties

Label 4.2e4_11e2_59e2.6t9.1c1
Dimension 4
Group $S_3^2$
Conductor $ 2^{4} \cdot 11^{2} \cdot 59^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$6739216= 2^{4} \cdot 11^{2} \cdot 59^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 7 x^{4} - 62 x^{3} + 65 x^{2} - 168 x + 135 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 11\cdot 13 + 2\cdot 13^{2} + 4\cdot 13^{3} + 7\cdot 13^{4} + 4\cdot 13^{5} + 13^{6} + 13^{7} + 8\cdot 13^{8} + 4\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 5 + \left(6 a + 7\right)\cdot 13 + \left(12 a + 1\right)\cdot 13^{2} + \left(10 a + 2\right)\cdot 13^{3} + \left(6 a + 9\right)\cdot 13^{4} + \left(11 a + 8\right)\cdot 13^{5} + \left(11 a + 10\right)\cdot 13^{6} + \left(9 a + 4\right)\cdot 13^{7} + 9 a\cdot 13^{8} + \left(11 a + 3\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 10 + \left(7 a + 12\right)\cdot 13 + \left(12 a + 8\right)\cdot 13^{2} + \left(4 a + 1\right)\cdot 13^{3} + \left(6 a + 2\right)\cdot 13^{4} + \left(9 a + 9\right)\cdot 13^{5} + \left(8 a + 12\right)\cdot 13^{6} + \left(11 a + 10\right)\cdot 13^{7} + \left(9 a + 9\right)\cdot 13^{8} + 8\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 2 + \left(5 a + 2\right)\cdot 13 + 13^{2} + \left(8 a + 7\right)\cdot 13^{3} + \left(6 a + 3\right)\cdot 13^{4} + \left(3 a + 12\right)\cdot 13^{5} + \left(4 a + 11\right)\cdot 13^{6} + a\cdot 13^{7} + \left(3 a + 8\right)\cdot 13^{8} + \left(12 a + 12\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 10 + 11\cdot 13 + 3\cdot 13^{2} + 10\cdot 13^{3} + 11\cdot 13^{4} + 3\cdot 13^{5} + 4\cdot 13^{6} + 5\cdot 13^{7} + 12\cdot 13^{8} + 4\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 12 + \left(6 a + 6\right)\cdot 13 + 7\cdot 13^{2} + 2 a\cdot 13^{3} + \left(6 a + 5\right)\cdot 13^{4} + a\cdot 13^{5} + \left(a + 11\right)\cdot 13^{6} + \left(3 a + 2\right)\cdot 13^{7} + 3 a\cdot 13^{8} + \left(a + 5\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,4)(3,5)$
$(1,4,3)$
$(2,5,6)$
$(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$3$$2$$(1,6)(2,4)(3,5)$$0$
$3$$2$$(1,2)(3,5)(4,6)$$0$
$9$$2$$(3,4)(5,6)$$0$
$2$$3$$(1,4,3)(2,5,6)$$-2$
$2$$3$$(1,3,4)(2,5,6)$$-2$
$4$$3$$(1,4,3)$$1$
$6$$6$$(1,2,4,5,3,6)$$0$
$6$$6$$(1,6,3,2,4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.