Properties

Label 4.2e4_1051.5t5.1
Dimension 4
Group $S_5$
Conductor $ 2^{4} \cdot 1051 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$16816= 2^{4} \cdot 1051 $
Artin number field: Splitting field of $f= x^{5} - 2 x^{3} - 2 x^{2} - 4 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 541 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 72 + 518\cdot 541 + 520\cdot 541^{2} + 441\cdot 541^{3} + 281\cdot 541^{4} +O\left(541^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 87 + 63\cdot 541 + 166\cdot 541^{2} + 541^{3} + 35\cdot 541^{4} +O\left(541^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 246 + 91\cdot 541 + 97\cdot 541^{2} + 177\cdot 541^{3} + 148\cdot 541^{4} +O\left(541^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 284 + 379\cdot 541 + 21\cdot 541^{2} + 301\cdot 541^{3} + 189\cdot 541^{4} +O\left(541^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 393 + 29\cdot 541 + 276\cdot 541^{2} + 160\cdot 541^{3} + 427\cdot 541^{4} +O\left(541^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.