Properties

Label 4.2e3_857e2.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{3} \cdot 857^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$5875592= 2^{3} \cdot 857^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{3} + 2 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: $ x^{2} + 82 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 74 a + 19 + \left(48 a + 3\right)\cdot 83 + \left(47 a + 76\right)\cdot 83^{2} + \left(53 a + 3\right)\cdot 83^{3} + \left(67 a + 46\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 59 + \left(74 a + 21\right)\cdot 83 + 74\cdot 83^{2} + \left(4 a + 79\right)\cdot 83^{3} + \left(45 a + 81\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 45 + 51\cdot 83 + 7\cdot 83^{2} + 3\cdot 83^{3} + 44\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 10 + \left(34 a + 61\right)\cdot 83 + \left(35 a + 74\right)\cdot 83^{2} + \left(29 a + 9\right)\cdot 83^{3} + \left(15 a + 60\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 54 + 18\cdot 83 + 15\cdot 83^{2} + 69\cdot 83^{3} + 59\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 80 a + 62 + \left(8 a + 9\right)\cdot 83 + \left(82 a + 1\right)\cdot 83^{2} + 78 a\cdot 83^{3} + \left(37 a + 40\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$2$
$6$$2$$(3,6)$$0$
$9$$2$$(3,6)(4,5)$$0$
$4$$3$$(1,4,5)(2,3,6)$$1$
$4$$3$$(1,4,5)$$-2$
$18$$4$$(1,2)(3,5,6,4)$$0$
$12$$6$$(1,3,4,6,5,2)$$-1$
$12$$6$$(1,4,5)(3,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.