Properties

Label 4.2e3_7e2_23e2.8t29.5
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 2^{3} \cdot 7^{2} \cdot 23^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$207368= 2^{3} \cdot 7^{2} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 2 x^{6} - 3 x^{5} + 2 x^{4} + 5 x^{3} - 3 x^{2} - 6 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 233 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 3 + 178\cdot 233 + 66\cdot 233^{2} + 115\cdot 233^{3} + 67\cdot 233^{4} + 151\cdot 233^{5} + 148\cdot 233^{6} + 133\cdot 233^{7} +O\left(233^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 10 + 84\cdot 233 + 115\cdot 233^{2} + 175\cdot 233^{3} + 157\cdot 233^{4} + 11\cdot 233^{5} + 198\cdot 233^{6} + 182\cdot 233^{7} +O\left(233^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 36 + 102\cdot 233 + 190\cdot 233^{2} + 119\cdot 233^{3} + 78\cdot 233^{4} + 30\cdot 233^{5} + 115\cdot 233^{6} + 218\cdot 233^{7} +O\left(233^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 103 + 72\cdot 233 + 156\cdot 233^{2} + 62\cdot 233^{3} + 88\cdot 233^{4} + 142\cdot 233^{5} + 76\cdot 233^{6} + 58\cdot 233^{7} +O\left(233^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 107 + 13\cdot 233 + 134\cdot 233^{2} + 167\cdot 233^{3} + 134\cdot 233^{4} + 42\cdot 233^{5} + 222\cdot 233^{6} + 51\cdot 233^{7} +O\left(233^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 144 + 125\cdot 233 + 38\cdot 233^{2} + 38\cdot 233^{3} + 137\cdot 233^{4} + 18\cdot 233^{5} + 75\cdot 233^{6} + 130\cdot 233^{7} +O\left(233^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 148 + 9\cdot 233 + 159\cdot 233^{2} + 121\cdot 233^{3} + 80\cdot 233^{4} + 199\cdot 233^{6} + 225\cdot 233^{7} +O\left(233^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 149 + 113\cdot 233 + 71\cdot 233^{2} + 131\cdot 233^{3} + 187\cdot 233^{4} + 68\cdot 233^{5} + 130\cdot 233^{6} + 163\cdot 233^{7} +O\left(233^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,5)(6,7)$
$(1,5)(2,6)$
$(1,7)(2,3)(4,5)(6,8)$
$(1,2)(5,6)$
$(4,8)(5,6)$
$(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,7)(4,8)(5,6)$ $-4$
$2$ $2$ $(3,7)(4,8)$ $0$
$2$ $2$ $(1,5)(2,6)(3,4)(7,8)$ $0$
$2$ $2$ $(1,6)(2,5)(3,4)(7,8)$ $0$
$4$ $2$ $(1,4)(2,8)(3,5)(6,7)$ $0$
$4$ $2$ $(1,7)(2,3)(4,5)(6,8)$ $0$
$4$ $2$ $(4,8)(5,6)$ $0$
$4$ $2$ $(1,5)(2,6)$ $2$
$4$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $-2$
$4$ $4$ $(1,5,2,6)(3,4,7,8)$ $0$
$4$ $4$ $(1,4,2,8)(3,6,7,5)$ $0$
$4$ $4$ $(1,4,2,8)(3,5,7,6)$ $0$
$8$ $4$ $(1,4,5,3)(2,8,6,7)$ $0$
$8$ $4$ $(1,4,6,3)(2,8,5,7)$ $0$
$8$ $4$ $(1,2)(3,4,7,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.