Properties

Label 4.2e3_751e3.8t44.1
Dimension 4
Group $C_2 \wr S_4$
Conductor $ 2^{3} \cdot 751^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2 \wr S_4$
Conductor:$3388518008= 2^{3} \cdot 751^{3} $
Artin number field: Splitting field of $f= x^{8} + x^{6} - x^{5} + 2 x^{4} - x^{3} + x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2 \wr S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 27.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 11 + 14\cdot 29 + \left(24 a + 9\right)\cdot 29^{2} + \left(6 a + 9\right)\cdot 29^{3} + \left(27 a + 21\right)\cdot 29^{4} + \left(15 a + 11\right)\cdot 29^{5} + \left(16 a + 5\right)\cdot 29^{6} + \left(a + 19\right)\cdot 29^{7} + \left(20 a + 15\right)\cdot 29^{8} + \left(24 a + 9\right)\cdot 29^{9} + \left(17 a + 22\right)\cdot 29^{10} + \left(22 a + 28\right)\cdot 29^{11} + \left(12 a + 19\right)\cdot 29^{12} + \left(15 a + 11\right)\cdot 29^{13} + \left(24 a + 28\right)\cdot 29^{14} + \left(19 a + 6\right)\cdot 29^{15} + \left(4 a + 28\right)\cdot 29^{16} + \left(27 a + 13\right)\cdot 29^{17} + \left(8 a + 20\right)\cdot 29^{18} + \left(a + 8\right)\cdot 29^{19} + \left(23 a + 8\right)\cdot 29^{20} + \left(19 a + 2\right)\cdot 29^{21} + 10\cdot 29^{22} + \left(12 a + 24\right)\cdot 29^{23} + \left(26 a + 21\right)\cdot 29^{24} + \left(23 a + 21\right)\cdot 29^{25} + \left(7 a + 22\right)\cdot 29^{26} +O\left(29^{ 27 }\right)$
$r_{ 2 }$ $=$ $ a + 19 + \left(2 a + 28\right)\cdot 29 + \left(a + 11\right)\cdot 29^{2} + \left(3 a + 16\right)\cdot 29^{3} + \left(17 a + 20\right)\cdot 29^{4} + \left(8 a + 10\right)\cdot 29^{5} + \left(13 a + 1\right)\cdot 29^{6} + \left(17 a + 21\right)\cdot 29^{7} + \left(20 a + 19\right)\cdot 29^{8} + \left(22 a + 25\right)\cdot 29^{9} + \left(4 a + 11\right)\cdot 29^{10} + \left(27 a + 24\right)\cdot 29^{11} + \left(2 a + 6\right)\cdot 29^{12} + \left(4 a + 6\right)\cdot 29^{13} + \left(26 a + 24\right)\cdot 29^{14} + \left(9 a + 11\right)\cdot 29^{15} + \left(13 a + 25\right)\cdot 29^{16} + \left(28 a + 12\right)\cdot 29^{17} + \left(23 a + 2\right)\cdot 29^{18} + \left(2 a + 1\right)\cdot 29^{19} + \left(12 a + 23\right)\cdot 29^{20} + \left(27 a + 3\right)\cdot 29^{21} + \left(17 a + 14\right)\cdot 29^{22} + \left(27 a + 12\right)\cdot 29^{23} + \left(24 a + 20\right)\cdot 29^{24} + \left(4 a + 15\right)\cdot 29^{25} + \left(7 a + 17\right)\cdot 29^{26} +O\left(29^{ 27 }\right)$
$r_{ 3 }$ $=$ $ 3 + 10\cdot 29 + 15\cdot 29^{2} + 23\cdot 29^{3} + 6\cdot 29^{4} + 6\cdot 29^{5} + 22\cdot 29^{6} + 25\cdot 29^{7} + 10\cdot 29^{8} + 3\cdot 29^{9} + 16\cdot 29^{10} + 9\cdot 29^{11} + 28\cdot 29^{12} + 13\cdot 29^{13} + 11\cdot 29^{14} + 21\cdot 29^{15} + 26\cdot 29^{16} + 18\cdot 29^{17} + 29^{18} + 27\cdot 29^{20} + 26\cdot 29^{21} + 9\cdot 29^{22} + 9\cdot 29^{23} + 6\cdot 29^{24} + 26\cdot 29^{25} + 23\cdot 29^{26} +O\left(29^{ 27 }\right)$
$r_{ 4 }$ $=$ $ 24 a + 21 + \left(22 a + 19\right)\cdot 29 + \left(24 a + 8\right)\cdot 29^{2} + \left(19 a + 11\right)\cdot 29^{3} + \left(19 a + 5\right)\cdot 29^{4} + \left(18 a + 13\right)\cdot 29^{5} + \left(12 a + 9\right)\cdot 29^{6} + \left(26 a + 1\right)\cdot 29^{7} + 22\cdot 29^{8} + \left(24 a + 3\right)\cdot 29^{9} + 2 a\cdot 29^{10} + \left(5 a + 16\right)\cdot 29^{11} + \left(16 a + 22\right)\cdot 29^{12} + \left(19 a + 5\right)\cdot 29^{13} + \left(9 a + 1\right)\cdot 29^{14} + \left(11 a + 5\right)\cdot 29^{15} + \left(10 a + 11\right)\cdot 29^{16} + \left(6 a + 20\right)\cdot 29^{17} + \left(16 a + 13\right)\cdot 29^{18} + \left(18 a + 12\right)\cdot 29^{19} + \left(6 a + 9\right)\cdot 29^{20} + \left(28 a + 13\right)\cdot 29^{21} + \left(12 a + 7\right)\cdot 29^{22} + a\cdot 29^{23} + \left(20 a + 10\right)\cdot 29^{24} + \left(15 a + 28\right)\cdot 29^{25} + \left(20 a + 26\right)\cdot 29^{26} +O\left(29^{ 27 }\right)$
$r_{ 5 }$ $=$ $ 28 a + 24 + \left(26 a + 8\right)\cdot 29 + \left(27 a + 15\right)\cdot 29^{2} + \left(25 a + 1\right)\cdot 29^{3} + \left(11 a + 16\right)\cdot 29^{4} + \left(20 a + 7\right)\cdot 29^{5} + \left(15 a + 1\right)\cdot 29^{6} + \left(11 a + 8\right)\cdot 29^{7} + \left(8 a + 18\right)\cdot 29^{8} + \left(6 a + 2\right)\cdot 29^{9} + \left(24 a + 13\right)\cdot 29^{10} + \left(a + 10\right)\cdot 29^{11} + \left(26 a + 23\right)\cdot 29^{12} + \left(24 a + 23\right)\cdot 29^{13} + \left(2 a + 5\right)\cdot 29^{14} + \left(19 a + 6\right)\cdot 29^{15} + \left(15 a + 24\right)\cdot 29^{16} + 25\cdot 29^{17} + \left(5 a + 6\right)\cdot 29^{18} + \left(26 a + 20\right)\cdot 29^{19} + \left(16 a + 22\right)\cdot 29^{20} + \left(a + 12\right)\cdot 29^{21} + \left(11 a + 18\right)\cdot 29^{22} + \left(a + 16\right)\cdot 29^{23} + \left(4 a + 1\right)\cdot 29^{24} + \left(24 a + 15\right)\cdot 29^{25} + \left(21 a + 19\right)\cdot 29^{26} +O\left(29^{ 27 }\right)$
$r_{ 6 }$ $=$ $ 10 + 5\cdot 29 + 19\cdot 29^{2} + 6\cdot 29^{3} + 14\cdot 29^{4} + 2\cdot 29^{5} + 8\cdot 29^{6} + 25\cdot 29^{7} + 29^{8} + 9\cdot 29^{9} + 4\cdot 29^{10} + 9\cdot 29^{11} + 7\cdot 29^{13} + 24\cdot 29^{14} + 17\cdot 29^{15} + 3\cdot 29^{16} + 11\cdot 29^{17} + 2\cdot 29^{18} + 7\cdot 29^{19} + 24\cdot 29^{20} + 4\cdot 29^{21} + 18\cdot 29^{22} + 3\cdot 29^{23} + 8\cdot 29^{24} + 10\cdot 29^{25} + 27\cdot 29^{26} +O\left(29^{ 27 }\right)$
$r_{ 7 }$ $=$ $ 5 a + 25 + \left(6 a + 22\right)\cdot 29 + \left(4 a + 22\right)\cdot 29^{2} + \left(9 a + 27\right)\cdot 29^{3} + \left(9 a + 25\right)\cdot 29^{4} + \left(10 a + 28\right)\cdot 29^{5} + \left(16 a + 24\right)\cdot 29^{6} + \left(2 a + 4\right)\cdot 29^{7} + 28 a\cdot 29^{8} + \left(4 a + 7\right)\cdot 29^{9} + \left(26 a + 19\right)\cdot 29^{10} + \left(23 a + 9\right)\cdot 29^{11} + \left(12 a + 11\right)\cdot 29^{12} + 9 a\cdot 29^{13} + \left(19 a + 1\right)\cdot 29^{14} + \left(17 a + 23\right)\cdot 29^{15} + \left(18 a + 22\right)\cdot 29^{16} + \left(22 a + 12\right)\cdot 29^{17} + \left(12 a + 1\right)\cdot 29^{18} + \left(10 a + 2\right)\cdot 29^{19} + \left(22 a + 24\right)\cdot 29^{20} + 2\cdot 29^{21} + \left(16 a + 15\right)\cdot 29^{22} + \left(27 a + 23\right)\cdot 29^{23} + \left(8 a + 21\right)\cdot 29^{24} + \left(13 a + 28\right)\cdot 29^{25} + \left(8 a + 26\right)\cdot 29^{26} +O\left(29^{ 27 }\right)$
$r_{ 8 }$ $=$ $ 19 a + 3 + \left(28 a + 6\right)\cdot 29 + \left(4 a + 13\right)\cdot 29^{2} + \left(22 a + 19\right)\cdot 29^{3} + \left(a + 5\right)\cdot 29^{4} + \left(13 a + 6\right)\cdot 29^{5} + \left(12 a + 14\right)\cdot 29^{6} + \left(27 a + 10\right)\cdot 29^{7} + \left(8 a + 27\right)\cdot 29^{8} + \left(4 a + 25\right)\cdot 29^{9} + \left(11 a + 28\right)\cdot 29^{10} + \left(6 a + 7\right)\cdot 29^{11} + \left(16 a + 3\right)\cdot 29^{12} + \left(13 a + 18\right)\cdot 29^{13} + \left(4 a + 19\right)\cdot 29^{14} + \left(9 a + 23\right)\cdot 29^{15} + \left(24 a + 2\right)\cdot 29^{16} + a\cdot 29^{17} + \left(20 a + 9\right)\cdot 29^{18} + \left(27 a + 6\right)\cdot 29^{19} + \left(5 a + 6\right)\cdot 29^{20} + \left(9 a + 20\right)\cdot 29^{21} + \left(28 a + 22\right)\cdot 29^{22} + \left(16 a + 25\right)\cdot 29^{23} + \left(2 a + 25\right)\cdot 29^{24} + \left(5 a + 27\right)\cdot 29^{25} + \left(21 a + 8\right)\cdot 29^{26} +O\left(29^{ 27 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(6,8)$
$(1,4,2,3)(5,7,6,8)$
$(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$4$ $2$ $(2,7)$ $2$
$4$ $2$ $(2,7)(3,6)(4,5)$ $-2$
$6$ $2$ $(1,8)(2,7)$ $0$
$12$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$12$ $2$ $(1,3)(6,8)$ $-2$
$12$ $2$ $(1,8)(2,4)(3,6)(5,7)$ $2$
$24$ $2$ $(1,3)(2,7)(6,8)$ $0$
$32$ $3$ $(2,3,4)(5,7,6)$ $1$
$12$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$
$12$ $4$ $(1,6,8,3)$ $-2$
$12$ $4$ $(1,8)(2,5,7,4)(3,6)$ $2$
$24$ $4$ $(1,2,8,7)(3,4)(5,6)$ $0$
$24$ $4$ $(1,6,8,3)(2,7)$ $0$
$48$ $4$ $(1,4,2,3)(5,7,6,8)$ $0$
$32$ $6$ $(2,6,5,7,3,4)$ $1$
$32$ $6$ $(1,8)(2,3,4)(5,7,6)$ $-1$
$32$ $6$ $(1,8)(2,6,5,7,3,4)$ $-1$
$48$ $8$ $(1,4,2,6,8,5,7,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.