Properties

Label 4.2e3_47_313.5t5.1c1
Dimension 4
Group $S_5$
Conductor $ 2^{3} \cdot 47 \cdot 313 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$117688= 2^{3} \cdot 47 \cdot 313 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 5 x^{3} + 4 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.2e3_47_313.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 401 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 150 + 146\cdot 401 + 320\cdot 401^{2} + 69\cdot 401^{3} + 339\cdot 401^{4} +O\left(401^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 191 + 4\cdot 401 + 236\cdot 401^{2} + 140\cdot 401^{3} + 244\cdot 401^{4} +O\left(401^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 242 + 126\cdot 401 + 319\cdot 401^{2} + 324\cdot 401^{3} + 153\cdot 401^{4} +O\left(401^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 296 + 372\cdot 401 + 118\cdot 401^{2} + 274\cdot 401^{3} + 66\cdot 401^{4} +O\left(401^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 325 + 151\cdot 401 + 208\cdot 401^{2} + 393\cdot 401^{3} + 398\cdot 401^{4} +O\left(401^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.