Properties

Label 4.2e3_3e2_5_67e2.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{3} \cdot 3^{2} \cdot 5 \cdot 67^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$1616040= 2^{3} \cdot 3^{2} \cdot 5 \cdot 67^{2} $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} - 2 x^{3} + 4 x^{2} - 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.2e3_5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 10 + 10\cdot 53 + \left(16 a + 13\right)\cdot 53^{2} + \left(19 a + 27\right)\cdot 53^{3} + \left(34 a + 44\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 45 a + 24 + \left(18 a + 41\right)\cdot 53 + \left(5 a + 32\right)\cdot 53^{2} + \left(10 a + 31\right)\cdot 53^{3} + \left(20 a + 45\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 + 44\cdot 53 + 40\cdot 53^{2} + 33\cdot 53^{3} + 9\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 24 + 39\cdot 53 + 12\cdot 53^{2} + 17\cdot 53^{3} + 45\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 45 + \left(34 a + 18\right)\cdot 53 + \left(47 a + 35\right)\cdot 53^{2} + \left(42 a + 13\right)\cdot 53^{3} + \left(32 a + 10\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 47 a + 34 + \left(52 a + 4\right)\cdot 53 + \left(36 a + 24\right)\cdot 53^{2} + \left(33 a + 35\right)\cdot 53^{3} + \left(18 a + 3\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,3)$
$(1,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$2$
$6$$2$$(3,6)$$0$
$9$$2$$(3,6)(4,5)$$0$
$4$$3$$(1,3,6)$$-2$
$4$$3$$(1,3,6)(2,4,5)$$1$
$18$$4$$(1,2)(3,5,6,4)$$0$
$12$$6$$(1,4,3,5,6,2)$$-1$
$12$$6$$(2,4,5)(3,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.