Properties

Label 4.2e3_31_557.5t5.1c1
Dimension 4
Group $S_5$
Conductor $ 2^{3} \cdot 31 \cdot 557 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$138136= 2^{3} \cdot 31 \cdot 557 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 6 x^{3} + 3 x^{2} + 4 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.2e3_31_557.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 443 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 65 + 366\cdot 443 + 206\cdot 443^{2} + 193\cdot 443^{3} + 240\cdot 443^{4} +O\left(443^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 86 + 6\cdot 443 + 121\cdot 443^{2} + 222\cdot 443^{4} +O\left(443^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 157 + 215\cdot 443 + 325\cdot 443^{2} + 66\cdot 443^{3} + 392\cdot 443^{4} +O\left(443^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 203 + 158\cdot 443 + 430\cdot 443^{2} + 105\cdot 443^{3} + 27\cdot 443^{4} +O\left(443^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 376 + 139\cdot 443 + 245\cdot 443^{2} + 76\cdot 443^{3} + 4\cdot 443^{4} +O\left(443^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.