Properties

Label 4.2e3_2803.5t5.1
Dimension 4
Group $S_5$
Conductor $ 2^{3} \cdot 2803 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$22424= 2^{3} \cdot 2803 $
Artin number field: Splitting field of $f= x^{5} - 2 x^{3} - x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 3 + \left(10 a + 9\right)\cdot 11 + \left(2 a + 2\right)\cdot 11^{2} + \left(10 a + 4\right)\cdot 11^{3} + a\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 + 3\cdot 11 + 3\cdot 11^{2} + 9\cdot 11^{3} +O\left(11^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 a + 4 + 3\cdot 11 + \left(8 a + 4\right)\cdot 11^{2} + 9\cdot 11^{3} + \left(9 a + 8\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 4 + \left(a + 2\right)\cdot 11 + \left(9 a + 10\right)\cdot 11^{2} + \left(8 a + 2\right)\cdot 11^{3} + \left(a + 1\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 9 + \left(9 a + 3\right)\cdot 11 + \left(a + 1\right)\cdot 11^{2} + \left(2 a + 7\right)\cdot 11^{3} + \left(9 a + 10\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.