Properties

Label 4.2e3_2113e2.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{3} \cdot 2113^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$35718152= 2^{3} \cdot 2113^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 31 x^{4} + 41 x^{3} + 247 x^{2} - 144 x - 508 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.2e3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 9 + 10\cdot 31 + 17\cdot 31^{2} + 8\cdot 31^{3} + 20\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 17 + \left(10 a + 5\right)\cdot 31 + \left(14 a + 24\right)\cdot 31^{2} + \left(3 a + 19\right)\cdot 31^{3} + 22\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 8 + \left(24 a + 26\right)\cdot 31 + \left(11 a + 22\right)\cdot 31^{2} + \left(13 a + 3\right)\cdot 31^{3} + \left(29 a + 29\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 30 + 13\cdot 31 + 26\cdot 31^{2} + 29\cdot 31^{3} + 19\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 a + 16 + \left(20 a + 11\right)\cdot 31 + \left(16 a + 11\right)\cdot 31^{2} + \left(27 a + 12\right)\cdot 31^{3} + \left(30 a + 19\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 15 + \left(6 a + 25\right)\cdot 31 + \left(19 a + 21\right)\cdot 31^{2} + \left(17 a + 18\right)\cdot 31^{3} + \left(a + 12\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$0$
$6$$2$$(2,4)$$2$
$9$$2$$(1,3)(2,4)$$0$
$4$$3$$(1,3,6)(2,4,5)$$-2$
$4$$3$$(1,3,6)$$1$
$18$$4$$(1,2,3,4)(5,6)$$0$
$12$$6$$(1,4,3,5,6,2)$$0$
$12$$6$$(1,3,6)(2,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.