Properties

Label 4.2e3_2113e2.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{3} \cdot 2113^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$35718152= 2^{3} \cdot 2113^{2} $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} - 2 x^{3} + 7 x^{2} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 11 + 21 a\cdot 31 + \left(3 a + 5\right)\cdot 31^{2} + \left(19 a + 3\right)\cdot 31^{3} + \left(24 a + 26\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 6 + \left(26 a + 8\right)\cdot 31 + \left(22 a + 27\right)\cdot 31^{2} + \left(17 a + 1\right)\cdot 31^{3} + \left(7 a + 21\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 6 + \left(9 a + 30\right)\cdot 31 + \left(27 a + 21\right)\cdot 31^{2} + \left(11 a + 6\right)\cdot 31^{3} + \left(6 a + 25\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 4 + \left(4 a + 1\right)\cdot 31 + \left(8 a + 15\right)\cdot 31^{2} + \left(13 a + 14\right)\cdot 31^{3} + \left(23 a + 18\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 + 4\cdot 31^{2} + 21\cdot 31^{3} + 10\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 21 + 21\cdot 31 + 19\cdot 31^{2} + 14\cdot 31^{3} + 22\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,5)$
$(1,2)(3,4)(5,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $2$
$6$ $2$ $(3,5)$ $0$
$9$ $2$ $(3,5)(4,6)$ $0$
$4$ $3$ $(1,3,5)$ $-2$
$4$ $3$ $(1,3,5)(2,4,6)$ $1$
$18$ $4$ $(1,2)(3,6,5,4)$ $0$
$12$ $6$ $(1,4,3,6,5,2)$ $-1$
$12$ $6$ $(2,4,6)(3,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.