Properties

Label 4.2e3_1033e2.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{3} \cdot 1033^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$8536712= 2^{3} \cdot 1033^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 9 x^{4} + x^{3} + 34 x^{2} + 45 x - 238 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.2e3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 29 a + 26 + \left(5 a + 4\right)\cdot 41 + \left(21 a + 16\right)\cdot 41^{2} + \left(26 a + 16\right)\cdot 41^{3} + \left(30 a + 18\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 20\cdot 41 + 9\cdot 41^{2} + 15\cdot 41^{3} + 26\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 + 2\cdot 41 + 33\cdot 41^{2} + 31\cdot 41^{3} + 20\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 31 + \left(35 a + 33\right)\cdot 41 + \left(19 a + 32\right)\cdot 41^{2} + \left(14 a + 33\right)\cdot 41^{3} + \left(10 a + 1\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 39 a + 12 + \left(30 a + 24\right)\cdot 41 + \left(11 a + 13\right)\cdot 41^{2} + \left(10 a + 3\right)\cdot 41^{3} + \left(24 a + 17\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 6 + \left(10 a + 37\right)\cdot 41 + \left(29 a + 17\right)\cdot 41^{2} + \left(30 a + 22\right)\cdot 41^{3} + \left(16 a + 38\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)$
$(1,2)(3,5)(4,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$0$
$6$$2$$(1,3)$$2$
$9$$2$$(1,3)(2,5)$$0$
$4$$3$$(1,3,4)(2,5,6)$$-2$
$4$$3$$(2,5,6)$$1$
$18$$4$$(1,5,3,2)(4,6)$$0$
$12$$6$$(1,2,3,5,4,6)$$0$
$12$$6$$(1,3)(2,5,6)$$-1$
The blue line marks the conjugacy class containing complex conjugation.