Properties

Label 4.2e2_7e2_37e2.6t9.1
Dimension 4
Group $S_3^2$
Conductor $ 2^{2} \cdot 7^{2} \cdot 37^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$268324= 2^{2} \cdot 7^{2} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 4 x^{4} - 6 x^{3} + 14 x^{2} - 12 x + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 8 + \left(19 a + 1\right)\cdot 23 + \left(4 a + 4\right)\cdot 23^{2} + 19 a\cdot 23^{3} + \left(10 a + 18\right)\cdot 23^{4} + \left(4 a + 10\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ a + 18 + \left(20 a + 12\right)\cdot 23 + \left(11 a + 5\right)\cdot 23^{2} + \left(4 a + 18\right)\cdot 23^{3} + \left(15 a + 6\right)\cdot 23^{4} + \left(4 a + 12\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 22 + 2\cdot 23 + 19\cdot 23^{2} + 14\cdot 23^{3} + 12\cdot 23^{4} + 19\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ a + 6 + \left(3 a + 19\right)\cdot 23 + \left(18 a + 16\right)\cdot 23^{2} + \left(3 a + 10\right)\cdot 23^{3} + \left(12 a + 20\right)\cdot 23^{4} + \left(18 a + 8\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 19 + 3\cdot 23 + 14\cdot 23^{2} + 9\cdot 23^{3} + 23^{4} + 11\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 20 + \left(2 a + 5\right)\cdot 23 + \left(11 a + 9\right)\cdot 23^{2} + \left(18 a + 15\right)\cdot 23^{3} + \left(7 a + 9\right)\cdot 23^{4} + \left(18 a + 6\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(3,6)(4,5)$
$(1,3)(2,5)(4,6)$
$(1,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$3$ $2$ $(1,3)(2,5)(4,6)$ $0$
$3$ $2$ $(1,6)(2,5)(3,4)$ $0$
$9$ $2$ $(2,3)(4,5)$ $0$
$2$ $3$ $(1,5,4)(2,3,6)$ $-2$
$2$ $3$ $(1,4,5)(2,3,6)$ $-2$
$4$ $3$ $(1,4,5)$ $1$
$6$ $6$ $(1,3,5,6,4,2)$ $0$
$6$ $6$ $(1,6,4,2,5,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.