Properties

Label 4.2e2_5e4_41e2.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{2} \cdot 5^{4} \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$4202500= 2^{2} \cdot 5^{4} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 3 x^{4} + 6 x^{3} - 14 x^{2} + 3 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 26 + \left(15 a + 22\right)\cdot 37 + \left(29 a + 16\right)\cdot 37^{2} + \left(30 a + 23\right)\cdot 37^{3} + \left(31 a + 7\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 15\cdot 37 + 27\cdot 37^{2} + 6\cdot 37^{3} + 11\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 25 + 21 a\cdot 37 + \left(7 a + 8\right)\cdot 37^{2} + \left(6 a + 6\right)\cdot 37^{3} + \left(5 a + 30\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 18 + \left(20 a + 14\right)\cdot 37 + \left(22 a + 30\right)\cdot 37^{2} + \left(26 a + 32\right)\cdot 37^{3} + \left(11 a + 27\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 + 9\cdot 37 + 2\cdot 37^{2} + 36\cdot 37^{3} + 22\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 21 + \left(16 a + 11\right)\cdot 37 + \left(14 a + 26\right)\cdot 37^{2} + \left(10 a + 5\right)\cdot 37^{3} + \left(25 a + 11\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $0$
$6$ $2$ $(3,5)$ $2$
$9$ $2$ $(3,5)(4,6)$ $0$
$4$ $3$ $(1,3,5)(2,4,6)$ $-2$
$4$ $3$ $(1,3,5)$ $1$
$18$ $4$ $(1,2)(3,6,5,4)$ $0$
$12$ $6$ $(1,4,3,6,5,2)$ $0$
$12$ $6$ $(2,4,6)(3,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.