Properties

Label 4.2e2_5e3_29e2.12t34.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{2} \cdot 5^{3} \cdot 29^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$420500= 2^{2} \cdot 5^{3} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 10 x^{4} + 35 x^{3} - 30 x^{2} + 13 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 44 + \left(13 a + 4\right)\cdot 71 + \left(36 a + 37\right)\cdot 71^{2} + \left(69 a + 11\right)\cdot 71^{3} + 7\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 64 a + 50 + 47\cdot 71 + \left(2 a + 8\right)\cdot 71^{2} + \left(33 a + 40\right)\cdot 71^{3} + \left(55 a + 54\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 63 a + 60 + \left(57 a + 22\right)\cdot 71 + \left(34 a + 25\right)\cdot 71^{2} + \left(a + 43\right)\cdot 71^{3} + \left(70 a + 10\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 36 + \left(70 a + 56\right)\cdot 71 + \left(68 a + 11\right)\cdot 71^{2} + \left(37 a + 33\right)\cdot 71^{3} + \left(15 a + 61\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 57 + 37\cdot 71 + 50\cdot 71^{2} + 68\cdot 71^{3} + 25\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 39 + 43\cdot 71 + 8\cdot 71^{2} + 16\cdot 71^{3} + 53\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $0$
$6$ $2$ $(3,6)$ $-2$
$9$ $2$ $(3,6)(4,5)$ $0$
$4$ $3$ $(1,3,6)(2,4,5)$ $-2$
$4$ $3$ $(1,3,6)$ $1$
$18$ $4$ $(1,2)(3,5,6,4)$ $0$
$12$ $6$ $(1,4,3,5,6,2)$ $0$
$12$ $6$ $(2,4,5)(3,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.