Properties

Label 4.2e2_5e2_7e2_19e2.6t9.1
Dimension 4
Group $S_3^2$
Conductor $ 2^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$1768900= 2^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} + 4 x^{4} - 23 x^{3} + 4 x^{2} - 46 x - 34 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 21 + \left(5 a + 11\right)\cdot 31 + \left(4 a + 28\right)\cdot 31^{2} + \left(4 a + 14\right)\cdot 31^{3} + \left(3 a + 17\right)\cdot 31^{4} + \left(11 a + 2\right)\cdot 31^{5} + \left(5 a + 2\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 16 + 30\cdot 31 + 31^{2} + 28\cdot 31^{3} + 24\cdot 31^{4} + 6\cdot 31^{5} + 27\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 17 + 13\cdot 31 + 15\cdot 31^{2} + 22\cdot 31^{3} + 24\cdot 31^{4} + 19\cdot 31^{5} + 11\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 29 a + 25 + \left(25 a + 19\right)\cdot 31 + 26 a\cdot 31^{2} + \left(26 a + 19\right)\cdot 31^{3} + \left(27 a + 19\right)\cdot 31^{4} + \left(19 a + 21\right)\cdot 31^{5} + \left(25 a + 1\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 11 a + 27 + \left(6 a + 7\right)\cdot 31 + \left(6 a + 20\right)\cdot 31^{2} + \left(8 a + 14\right)\cdot 31^{3} + \left(5 a + 17\right)\cdot 31^{4} + \left(14 a + 9\right)\cdot 31^{5} + \left(23 a + 24\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 18 + \left(24 a + 9\right)\cdot 31 + \left(24 a + 26\right)\cdot 31^{2} + \left(22 a + 24\right)\cdot 31^{3} + \left(25 a + 19\right)\cdot 31^{4} + \left(16 a + 1\right)\cdot 31^{5} + \left(7 a + 26\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,4,6,2,3)$
$(3,5,6)$
$(1,2,4)(3,5,6)$
$(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$3$ $2$ $(1,6)(2,5)(3,4)$ $0$
$3$ $2$ $(1,3)(2,5)(4,6)$ $0$
$9$ $2$ $(1,2)(5,6)$ $0$
$2$ $3$ $(1,2,4)(3,5,6)$ $-2$
$2$ $3$ $(1,4,2)(3,5,6)$ $-2$
$4$ $3$ $(1,4,2)$ $1$
$6$ $6$ $(1,5,4,6,2,3)$ $0$
$6$ $6$ $(1,6,2,3,4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.