Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 36 + 26\cdot 41 + 2\cdot 41^{2} + 31\cdot 41^{3} + 13\cdot 41^{4} + 23\cdot 41^{5} + 2\cdot 41^{6} +O\left(41^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 2 a + 3 + \left(18 a + 11\right)\cdot 41 + \left(26 a + 11\right)\cdot 41^{2} + \left(33 a + 33\right)\cdot 41^{3} + \left(12 a + 2\right)\cdot 41^{4} + \left(12 a + 34\right)\cdot 41^{5} + \left(19 a + 33\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 30 + 7\cdot 41 + 39\cdot 41^{2} + 22\cdot 41^{3} + 30\cdot 41^{4} + 30\cdot 41^{5} + 9\cdot 41^{6} +O\left(41^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 36 a + 31 + \left(11 a + 27\right)\cdot 41 + \left(8 a + 12\right)\cdot 41^{2} + \left(39 a + 32\right)\cdot 41^{3} + \left(10 a + 16\right)\cdot 41^{4} + \left(a + 12\right)\cdot 41^{5} + \left(34 a + 30\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 5 a + 16 + \left(29 a + 27\right)\cdot 41 + \left(32 a + 25\right)\cdot 41^{2} + \left(a + 18\right)\cdot 41^{3} + \left(30 a + 10\right)\cdot 41^{4} + \left(39 a + 5\right)\cdot 41^{5} + \left(6 a + 8\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 39 a + 9 + \left(22 a + 22\right)\cdot 41 + \left(14 a + 31\right)\cdot 41^{2} + \left(7 a + 25\right)\cdot 41^{3} + \left(28 a + 7\right)\cdot 41^{4} + \left(28 a + 17\right)\cdot 41^{5} + \left(21 a + 38\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,3)(4,5)$ |
| $(2,6)(4,5)$ |
| $(1,5,4)(2,6,3)$ |
| $(1,3)(2,4)(5,6)$ |
| $(3,6)(4,5)$ |
| $(1,4)(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $3$ |
$2$ |
$(1,3)(2,4)(5,6)$ |
$0$ |
| $3$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$0$ |
| $9$ |
$2$ |
$(1,4)(2,3)$ |
$0$ |
| $2$ |
$3$ |
$(1,5,4)(2,6,3)$ |
$-2$ |
| $2$ |
$3$ |
$(1,4,5)(2,6,3)$ |
$-2$ |
| $4$ |
$3$ |
$(1,4,5)$ |
$1$ |
| $6$ |
$6$ |
$(1,3,4,6,5,2)$ |
$0$ |
| $6$ |
$6$ |
$(1,2,4,6,5,3)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.