Properties

Label 4.2e2_5_41e2.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{2} \cdot 5 \cdot 41^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$33620= 2^{2} \cdot 5 \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 4 x^{4} - x^{3} + 8 x^{2} + 6 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 6 + \left(22 a + 19\right)\cdot 31 + \left(6 a + 14\right)\cdot 31^{2} + \left(22 a + 25\right)\cdot 31^{3} + \left(2 a + 21\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 a + \left(24 a + 24\right)\cdot 31 + \left(18 a + 21\right)\cdot 31^{2} + \left(2 a + 5\right)\cdot 31^{3} + \left(6 a + 7\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 26 + \left(6 a + 28\right)\cdot 31 + \left(12 a + 3\right)\cdot 31^{2} + \left(28 a + 23\right)\cdot 31^{3} + \left(24 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 + 4\cdot 31 + 26\cdot 31^{2} + 25\cdot 31^{3} + 12\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 + 18\cdot 31 + 20\cdot 31^{2} + 11\cdot 31^{3} + 29\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 28 a + 12 + \left(8 a + 29\right)\cdot 31 + \left(24 a + 5\right)\cdot 31^{2} + \left(8 a + 1\right)\cdot 31^{3} + \left(28 a + 5\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$0$
$6$$2$$(2,3)$$2$
$9$$2$$(1,4)(2,3)$$0$
$4$$3$$(2,3,5)$$1$
$4$$3$$(1,4,6)(2,3,5)$$-2$
$18$$4$$(1,2,4,3)(5,6)$$0$
$12$$6$$(1,2,4,3,6,5)$$0$
$12$$6$$(1,4,6)(2,3)$$-1$
The blue line marks the conjugacy class containing complex conjugation.