Properties

Label 4.2e2_571e2.8t23.2c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{2} \cdot 571^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$1304164= 2^{2} \cdot 571^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 7 x^{6} + 17 x^{5} + 2 x^{4} - 47 x^{3} + 62 x^{2} - 36 x + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 29 + 16\cdot 41 + 10\cdot 41^{2} + 8\cdot 41^{3} + 21\cdot 41^{4} + 22\cdot 41^{5} + 12\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 21 + 22\cdot 41 + 41^{2} + 16\cdot 41^{3} + 38\cdot 41^{4} + 37\cdot 41^{5} + 33\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 24 + \left(35 a + 38\right)\cdot 41 + \left(25 a + 22\right)\cdot 41^{2} + \left(2 a + 32\right)\cdot 41^{3} + \left(16 a + 31\right)\cdot 41^{4} + \left(26 a + 13\right)\cdot 41^{5} + \left(5 a + 21\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 29 + \left(28 a + 30\right)\cdot 41 + \left(11 a + 25\right)\cdot 41^{2} + \left(15 a + 7\right)\cdot 41^{3} + \left(18 a + 19\right)\cdot 41^{4} + \left(12 a + 3\right)\cdot 41^{5} + \left(18 a + 29\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 6 + \left(20 a + 37\right)\cdot 41 + \left(2 a + 29\right)\cdot 41^{2} + \left(21 a + 11\right)\cdot 41^{3} + \left(25 a + 33\right)\cdot 41^{4} + \left(26 a + 27\right)\cdot 41^{5} + \left(40 a + 5\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 39 a + 30 + \left(5 a + 18\right)\cdot 41 + \left(15 a + 24\right)\cdot 41^{2} + \left(38 a + 14\right)\cdot 41^{3} + \left(24 a + 36\right)\cdot 41^{4} + \left(14 a + 35\right)\cdot 41^{5} + \left(35 a + 11\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 27 a + 7 + \left(20 a + 2\right)\cdot 41 + \left(38 a + 17\right)\cdot 41^{2} + \left(19 a + 31\right)\cdot 41^{3} + \left(15 a + 6\right)\cdot 41^{4} + 14 a\cdot 41^{5} + 19\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 3 a + 20 + \left(12 a + 38\right)\cdot 41 + \left(29 a + 31\right)\cdot 41^{2} + 25 a\cdot 41^{3} + \left(22 a + 18\right)\cdot 41^{4} + \left(28 a + 22\right)\cdot 41^{5} + \left(22 a + 30\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,4)(5,8,7,6)$
$(1,4)(2,3)(5,7)$
$(1,3,7)(2,4,5)$
$(1,2)(3,4)(5,7)(6,8)$
$(1,7,2,5)(3,8,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,4)(5,7)(6,8)$$-4$
$12$$2$$(1,4)(2,3)(5,7)$$0$
$8$$3$$(1,8,4)(2,6,3)$$1$
$6$$4$$(1,7,2,5)(3,8,4,6)$$0$
$8$$6$$(1,3,8,2,4,6)(5,7)$$-1$
$6$$8$$(1,5,4,6,2,7,3,8)$$0$
$6$$8$$(1,7,4,8,2,5,3,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.