Properties

Label 4.2e2_55009.5t5.1c1
Dimension 4
Group $S_5$
Conductor $ 2^{2} \cdot 55009 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$220036= 2^{2} \cdot 55009 $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 5 x^{3} + 11 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.55009.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 38\cdot 83 + 44\cdot 83^{2} + 73\cdot 83^{3} + 46\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 37 + 9\cdot 83 + 43\cdot 83^{2} + 33\cdot 83^{3} + 35\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 45 + 72\cdot 83 + 68\cdot 83^{2} + 58\cdot 83^{3} + 48\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 77 + 72\cdot 83 + 42\cdot 83^{2} + 51\cdot 83^{3} + 52\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 80 + 55\cdot 83 + 49\cdot 83^{2} + 31\cdot 83^{3} + 65\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.