Properties

Label 4.2e2_523e2.8t23.2
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{2} \cdot 523^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$1094116= 2^{2} \cdot 523^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + x^{6} + 11 x^{5} - 8 x^{4} - 7 x^{3} + 8 x^{2} - 2 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 18 a + 29 + \left(30 a + 24\right)\cdot 37 + \left(36 a + 30\right)\cdot 37^{2} + \left(24 a + 18\right)\cdot 37^{3} + \left(7 a + 35\right)\cdot 37^{4} + \left(18 a + 2\right)\cdot 37^{5} + \left(3 a + 23\right)\cdot 37^{6} + \left(30 a + 17\right)\cdot 37^{7} + \left(28 a + 18\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 36 a + 21 + \left(20 a + 31\right)\cdot 37 + \left(6 a + 15\right)\cdot 37^{2} + 29 a\cdot 37^{3} + \left(6 a + 1\right)\cdot 37^{4} + \left(11 a + 18\right)\cdot 37^{5} + \left(25 a + 10\right)\cdot 37^{6} + \left(12 a + 24\right)\cdot 37^{7} + \left(9 a + 24\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 9 + 5\cdot 37 + 10\cdot 37^{2} + 5\cdot 37^{3} + 36\cdot 37^{4} + 20\cdot 37^{6} + 23\cdot 37^{7} + 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 29 + 31\cdot 37 + 26\cdot 37^{2} + 31\cdot 37^{3} + 36\cdot 37^{5} + 16\cdot 37^{6} + 13\cdot 37^{7} + 35\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 19 a + 9 + \left(6 a + 12\right)\cdot 37 + 6\cdot 37^{2} + \left(12 a + 18\right)\cdot 37^{3} + \left(29 a + 1\right)\cdot 37^{4} + \left(18 a + 34\right)\cdot 37^{5} + \left(33 a + 13\right)\cdot 37^{6} + \left(6 a + 19\right)\cdot 37^{7} + \left(8 a + 18\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 19 a + 27 + \left(6 a + 17\right)\cdot 37 + 36\cdot 37^{2} + \left(12 a + 7\right)\cdot 37^{3} + \left(29 a + 4\right)\cdot 37^{4} + \left(18 a + 31\right)\cdot 37^{5} + \left(33 a + 18\right)\cdot 37^{6} + \left(6 a + 23\right)\cdot 37^{7} + \left(8 a + 29\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 18 a + 11 + \left(30 a + 19\right)\cdot 37 + 36 a\cdot 37^{2} + \left(24 a + 29\right)\cdot 37^{3} + \left(7 a + 32\right)\cdot 37^{4} + \left(18 a + 5\right)\cdot 37^{5} + \left(3 a + 18\right)\cdot 37^{6} + \left(30 a + 13\right)\cdot 37^{7} + \left(28 a + 7\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 8 }$ $=$ $ a + 17 + \left(16 a + 5\right)\cdot 37 + \left(30 a + 21\right)\cdot 37^{2} + \left(7 a + 36\right)\cdot 37^{3} + \left(30 a + 35\right)\cdot 37^{4} + \left(25 a + 18\right)\cdot 37^{5} + \left(11 a + 26\right)\cdot 37^{6} + \left(24 a + 12\right)\cdot 37^{7} + \left(27 a + 12\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,5,2)(3,6,4,7)$
$(1,3,5,4)(2,6,8,7)$
$(1,5)(2,8)(3,4)(6,7)$
$(1,5)(2,6)(7,8)$
$(1,2,7)(5,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,5)(2,8)(3,4)(6,7)$ $-4$
$12$ $2$ $(1,5)(2,6)(7,8)$ $0$
$8$ $3$ $(1,2,7)(5,8,6)$ $1$
$6$ $4$ $(1,8,5,2)(3,6,4,7)$ $0$
$8$ $6$ $(1,8,7,5,2,6)(3,4)$ $-1$
$6$ $8$ $(1,7,3,2,5,6,4,8)$ $0$
$6$ $8$ $(1,6,3,8,5,7,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.