Properties

Label 4.2e2_409e2.5t4.1c1
Dimension 4
Group $A_5$
Conductor $ 2^{2} \cdot 409^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$A_5$
Conductor:$669124= 2^{2} \cdot 409^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 7 x^{3} + 5 x^{2} - 4 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 13 + 69\cdot 97 + 19\cdot 97^{2} + 14\cdot 97^{3} + 70\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 35 + 24\cdot 97 + 52\cdot 97^{2} + 6\cdot 97^{3} + 13\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 71 + 31\cdot 97 + 71\cdot 97^{2} + 47\cdot 97^{3} + 45\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 83 + 61\cdot 97 + 35\cdot 97^{2} + 58\cdot 97^{3} + 56\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 90 + 6\cdot 97 + 15\cdot 97^{2} + 67\cdot 97^{3} + 8\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$12$$5$$(1,2,3,4,5)$$-1$
$12$$5$$(1,3,4,5,2)$$-1$
The blue line marks the conjugacy class containing complex conjugation.