Properties

Label 4.2e2_3e6_19e2.6t9.1
Dimension 4
Group $S_3^2$
Conductor $ 2^{2} \cdot 3^{6} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$1052676= 2^{2} \cdot 3^{6} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 3 x^{4} + 2 x^{3} - 9 x^{2} + 27 x - 53 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 7 + \left(15 a + 12\right)\cdot 29 + \left(26 a + 14\right)\cdot 29^{2} + \left(15 a + 10\right)\cdot 29^{3} + 25\cdot 29^{4} + \left(4 a + 2\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 16 + 19\cdot 29 + 15\cdot 29^{2} + 11\cdot 29^{3} + 14\cdot 29^{4} + 17\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 28 + \left(13 a + 20\right)\cdot 29 + \left(2 a + 15\right)\cdot 29^{2} + \left(13 a + 5\right)\cdot 29^{3} + \left(28 a + 12\right)\cdot 29^{4} + \left(24 a + 22\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 13 + 6\cdot 29 + 4\cdot 29^{2} + 2\cdot 29^{3} + 11\cdot 29^{4} + 21\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 16 + \left(14 a + 2\right)\cdot 29 + \left(28 a + 27\right)\cdot 29^{2} + \left(17 a + 26\right)\cdot 29^{3} + \left(13 a + 15\right)\cdot 29^{4} + \left(21 a + 22\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 10 + \left(14 a + 25\right)\cdot 29 + 9\cdot 29^{2} + \left(11 a + 1\right)\cdot 29^{3} + \left(15 a + 8\right)\cdot 29^{4} + 7 a\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(1,2)(5,6)$
$(2,3)(5,6)$
$(1,6)(2,5)(3,4)$
$(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$3$ $2$ $(1,6)(2,5)(3,4)$ $0$
$3$ $2$ $(1,4)(2,5)(3,6)$ $0$
$9$ $2$ $(1,3)(4,6)$ $0$
$2$ $3$ $(1,3,2)(4,6,5)$ $-2$
$2$ $3$ $(1,2,3)(4,6,5)$ $-2$
$4$ $3$ $(4,5,6)$ $1$
$6$ $6$ $(1,5,3,4,2,6)$ $0$
$6$ $6$ $(1,5,2,4,3,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.