Properties

Label 4.2e2_3e6_17e2.6t9.1
Dimension 4
Group $S_3^2$
Conductor $ 2^{2} \cdot 3^{6} \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$842724= 2^{2} \cdot 3^{6} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{3} - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 29 a + 15 + \left(30 a + 24\right)\cdot 47 + \left(38 a + 19\right)\cdot 47^{2} + \left(46 a + 35\right)\cdot 47^{3} + \left(40 a + 30\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 16 + \left(17 a + 27\right)\cdot 47 + \left(28 a + 19\right)\cdot 47^{2} + \left(28 a + 32\right)\cdot 47^{3} + \left(43 a + 36\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 26 + \left(16 a + 9\right)\cdot 47 + \left(8 a + 19\right)\cdot 47^{2} + 43\cdot 47^{3} + \left(6 a + 18\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 34 + \left(29 a + 5\right)\cdot 47 + \left(18 a + 12\right)\cdot 47^{2} + \left(18 a + 14\right)\cdot 47^{3} + \left(3 a + 1\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 + 13\cdot 47 + 8\cdot 47^{2} + 15\cdot 47^{3} + 44\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 44 + 13\cdot 47 + 15\cdot 47^{2} + 9\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(3,5)$
$(1,5,3)$
$(3,5)(4,6)$
$(1,6,5,4,3,2)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$3$ $2$ $(1,4)(2,5)(3,6)$ $0$
$3$ $2$ $(1,2)(3,6)(4,5)$ $0$
$9$ $2$ $(2,6)(3,5)$ $0$
$2$ $3$ $(1,5,3)(2,6,4)$ $-2$
$2$ $3$ $(1,3,5)(2,6,4)$ $-2$
$4$ $3$ $(1,5,3)$ $1$
$6$ $6$ $(1,6,5,4,3,2)$ $0$
$6$ $6$ $(1,4,3,2,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.