Properties

Label 4.2e2_3e4_97e2.8t23.3c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{2} \cdot 3^{4} \cdot 97^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$3048516= 2^{2} \cdot 3^{4} \cdot 97^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 3 x^{6} + 6 x^{5} + 12 x^{4} + 36 x^{3} + 15 x^{2} + 3 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 2 + \left(11 a + 4\right)\cdot 19 + \left(17 a + 2\right)\cdot 19^{2} + \left(13 a + 6\right)\cdot 19^{3} + \left(5 a + 9\right)\cdot 19^{4} + \left(8 a + 12\right)\cdot 19^{5} + \left(18 a + 12\right)\cdot 19^{6} + \left(16 a + 10\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 4 + 7\cdot 19 + 11\cdot 19^{2} + 4\cdot 19^{4} + 5\cdot 19^{5} + 2\cdot 19^{6} + 5\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 7 + \left(7 a + 10\right)\cdot 19 + \left(a + 8\right)\cdot 19^{2} + \left(5 a + 2\right)\cdot 19^{3} + \left(13 a + 1\right)\cdot 19^{4} + \left(10 a + 15\right)\cdot 19^{5} + 3\cdot 19^{6} + \left(2 a + 9\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 2 + \left(6 a + 8\right)\cdot 19 + \left(9 a + 5\right)\cdot 19^{2} + \left(2 a + 4\right)\cdot 19^{3} + 8 a\cdot 19^{4} + \left(11 a + 8\right)\cdot 19^{5} + \left(3 a + 13\right)\cdot 19^{6} + \left(16 a + 12\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 6 + \left(8 a + 9\right)\cdot 19 + \left(7 a + 1\right)\cdot 19^{2} + \left(7 a + 14\right)\cdot 19^{3} + \left(3 a + 11\right)\cdot 19^{4} + \left(13 a + 11\right)\cdot 19^{5} + \left(16 a + 15\right)\cdot 19^{6} + \left(10 a + 11\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 12 + 4\cdot 19 + 18\cdot 19^{3} + 16\cdot 19^{4} + 9\cdot 19^{5} + 3\cdot 19^{6} + 14\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 10 a + 11 + \left(12 a + 5\right)\cdot 19 + \left(9 a + 8\right)\cdot 19^{2} + \left(16 a + 16\right)\cdot 19^{3} + \left(10 a + 5\right)\cdot 19^{4} + \left(7 a + 11\right)\cdot 19^{5} + \left(15 a + 5\right)\cdot 19^{6} + \left(2 a + 6\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 9 a + 16 + \left(10 a + 7\right)\cdot 19 + 11 a\cdot 19^{2} + \left(11 a + 14\right)\cdot 19^{3} + \left(15 a + 7\right)\cdot 19^{4} + \left(5 a + 2\right)\cdot 19^{5} + 2 a\cdot 19^{6} + \left(8 a + 6\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(3,7)(4,8)$
$(1,7,3,5)(2,4,6,8)$
$(1,3)(2,6)(4,8)(5,7)$
$(1,2,3,6)(4,7,8,5)$
$(1,8,7)(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,3)(2,6)(4,8)(5,7)$$-4$
$12$$2$$(1,5)(3,7)(4,8)$$0$
$8$$3$$(2,5,8)(4,6,7)$$1$
$6$$4$$(1,7,3,5)(2,4,6,8)$$0$
$8$$6$$(1,4,7,3,8,5)(2,6)$$-1$
$6$$8$$(1,4,5,2,3,8,7,6)$$0$
$6$$8$$(1,8,5,6,3,4,7,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.