Properties

Label 4.2e2_3e4_89e2.8t23.3
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{2} \cdot 3^{4} \cdot 89^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$2566404= 2^{2} \cdot 3^{4} \cdot 89^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + x^{6} + 11 x^{5} - 8 x^{4} - 7 x^{3} + 4 x^{2} + 2 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 6 + \left(6 a + 9\right)\cdot 11 + \left(9 a + 2\right)\cdot 11^{2} + \left(a + 5\right)\cdot 11^{3} + \left(7 a + 9\right)\cdot 11^{4} + \left(9 a + 3\right)\cdot 11^{5} + \left(5 a + 4\right)\cdot 11^{6} + \left(5 a + 4\right)\cdot 11^{7} + \left(a + 9\right)\cdot 11^{8} + \left(5 a + 5\right)\cdot 11^{9} + \left(9 a + 3\right)\cdot 11^{10} + \left(3 a + 9\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 2 }$ $=$ $ a + 2 + \left(4 a + 5\right)\cdot 11 + \left(a + 1\right)\cdot 11^{2} + \left(9 a + 3\right)\cdot 11^{3} + \left(3 a + 3\right)\cdot 11^{4} + \left(a + 2\right)\cdot 11^{5} + \left(5 a + 7\right)\cdot 11^{6} + \left(5 a + 9\right)\cdot 11^{7} + \left(9 a + 9\right)\cdot 11^{8} + \left(5 a + 2\right)\cdot 11^{9} + \left(a + 3\right)\cdot 11^{10} + \left(7 a + 4\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 9 + 4\cdot 11 + 4\cdot 11^{2} + 9\cdot 11^{3} + 6\cdot 11^{4} + 4\cdot 11^{5} + 11^{6} + 7\cdot 11^{7} + 3\cdot 11^{8} + 8\cdot 11^{9} + 7\cdot 11^{10} + 5\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 10 + \left(6 a + 5\right)\cdot 11 + \left(9 a + 9\right)\cdot 11^{2} + \left(a + 7\right)\cdot 11^{3} + \left(7 a + 7\right)\cdot 11^{4} + \left(9 a + 8\right)\cdot 11^{5} + \left(5 a + 3\right)\cdot 11^{6} + \left(5 a + 1\right)\cdot 11^{7} + \left(a + 1\right)\cdot 11^{8} + \left(5 a + 8\right)\cdot 11^{9} + \left(9 a + 7\right)\cdot 11^{10} + \left(3 a + 6\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 3 + 6\cdot 11 + 6\cdot 11^{2} + 11^{3} + 4\cdot 11^{4} + 6\cdot 11^{5} + 9\cdot 11^{6} + 3\cdot 11^{7} + 7\cdot 11^{8} + 2\cdot 11^{9} + 3\cdot 11^{10} + 5\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 3 a + \left(9 a + 5\right)\cdot 11 + \left(9 a + 1\right)\cdot 11^{2} + \left(3 a + 8\right)\cdot 11^{3} + \left(5 a + 7\right)\cdot 11^{4} + \left(4 a + 4\right)\cdot 11^{5} + \left(10 a + 3\right)\cdot 11^{6} + 7 a\cdot 11^{7} + \left(8 a + 3\right)\cdot 11^{8} + \left(a + 6\right)\cdot 11^{9} + \left(4 a + 3\right)\cdot 11^{10} + \left(8 a + 7\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 8 a + 1 + \left(a + 6\right)\cdot 11 + \left(a + 9\right)\cdot 11^{2} + \left(7 a + 2\right)\cdot 11^{3} + \left(5 a + 3\right)\cdot 11^{4} + \left(6 a + 6\right)\cdot 11^{5} + 7\cdot 11^{6} + \left(3 a + 10\right)\cdot 11^{7} + \left(2 a + 7\right)\cdot 11^{8} + \left(9 a + 4\right)\cdot 11^{9} + \left(6 a + 7\right)\cdot 11^{10} + \left(2 a + 3\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 8 }$ $=$ $ a + 6 + \left(4 a + 1\right)\cdot 11 + \left(a + 8\right)\cdot 11^{2} + \left(9 a + 5\right)\cdot 11^{3} + \left(3 a + 1\right)\cdot 11^{4} + \left(a + 7\right)\cdot 11^{5} + \left(5 a + 6\right)\cdot 11^{6} + \left(5 a + 6\right)\cdot 11^{7} + \left(9 a + 1\right)\cdot 11^{8} + \left(5 a + 5\right)\cdot 11^{9} + \left(a + 7\right)\cdot 11^{10} + \left(7 a + 1\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,7)(3,6,8)$
$(1,8)(2,4)(3,5)(6,7)$
$(1,3,8,5)(2,6,4,7)$
$(1,8)(3,7)(5,6)$
$(1,2,8,4)(3,7,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,4)(3,5)(6,7)$ $-4$
$12$ $2$ $(1,8)(3,7)(5,6)$ $0$
$8$ $3$ $(1,2,3)(4,5,8)$ $1$
$6$ $4$ $(1,2,8,4)(3,7,5,6)$ $0$
$8$ $6$ $(1,3,7,8,5,6)(2,4)$ $-1$
$6$ $8$ $(1,5,4,7,8,3,2,6)$ $0$
$6$ $8$ $(1,3,4,6,8,5,2,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.