Properties

Label 4.2e2_3e4_23e2.8t23.2c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{2} \cdot 3^{4} \cdot 23^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$171396= 2^{2} \cdot 3^{4} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 7 x^{6} - 7 x^{5} + 7 x^{4} - 7 x^{3} - 2 x^{2} + 5 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 30 a + 40 + \left(25 a + 33\right)\cdot 41 + \left(16 a + 17\right)\cdot 41^{2} + \left(22 a + 35\right)\cdot 41^{3} + \left(9 a + 1\right)\cdot 41^{4} + \left(3 a + 13\right)\cdot 41^{5} + \left(a + 19\right)\cdot 41^{6} + \left(31 a + 23\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 35 + 25 a\cdot 41 + \left(16 a + 40\right)\cdot 41^{2} + \left(22 a + 36\right)\cdot 41^{3} + \left(9 a + 32\right)\cdot 41^{4} + \left(3 a + 27\right)\cdot 41^{5} + \left(a + 21\right)\cdot 41^{6} + \left(31 a + 7\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 33 + 6\cdot 41^{2} + 18\cdot 41^{3} + 15\cdot 41^{4} + 26\cdot 41^{5} + 23\cdot 41^{6} + 11\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 24 a + 26 + \left(11 a + 35\right)\cdot 41 + \left(a + 3\right)\cdot 41^{2} + \left(37 a + 27\right)\cdot 41^{3} + \left(12 a + 19\right)\cdot 41^{4} + \left(5 a + 39\right)\cdot 41^{5} + \left(18 a + 36\right)\cdot 41^{6} + \left(36 a + 15\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 11 a + 7 + \left(15 a + 40\right)\cdot 41 + 24 a\cdot 41^{2} + \left(18 a + 4\right)\cdot 41^{3} + \left(31 a + 8\right)\cdot 41^{4} + \left(37 a + 13\right)\cdot 41^{5} + \left(39 a + 19\right)\cdot 41^{6} + \left(9 a + 33\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 2 + \left(15 a + 7\right)\cdot 41 + \left(24 a + 23\right)\cdot 41^{2} + \left(18 a + 5\right)\cdot 41^{3} + \left(31 a + 39\right)\cdot 41^{4} + \left(37 a + 27\right)\cdot 41^{5} + \left(39 a + 21\right)\cdot 41^{6} + \left(9 a + 17\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 9 + 40\cdot 41 + 34\cdot 41^{2} + 22\cdot 41^{3} + 25\cdot 41^{4} + 14\cdot 41^{5} + 17\cdot 41^{6} + 29\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 17 a + 16 + \left(29 a + 5\right)\cdot 41 + \left(39 a + 37\right)\cdot 41^{2} + \left(3 a + 13\right)\cdot 41^{3} + \left(28 a + 21\right)\cdot 41^{4} + \left(35 a + 1\right)\cdot 41^{5} + \left(22 a + 4\right)\cdot 41^{6} + \left(4 a + 25\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,6,7)(2,4,5,8)$
$(2,3,4)(5,7,8)$
$(2,5)(3,8)(4,7)$
$(1,6)(2,5)(3,7)(4,8)$
$(1,4,6,8)(2,7,5,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,6)(2,5)(3,7)(4,8)$$-4$
$12$$2$$(2,5)(3,8)(4,7)$$0$
$8$$3$$(2,3,4)(5,7,8)$$1$
$6$$4$$(1,3,6,7)(2,4,5,8)$$0$
$8$$6$$(1,6)(2,7,4,5,3,8)$$-1$
$6$$8$$(1,3,2,8,6,7,5,4)$$0$
$6$$8$$(1,7,2,4,6,3,5,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.