Properties

Label 4.2e2_3e4_23e2.8t23.1c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{2} \cdot 3^{4} \cdot 23^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$171396= 2^{2} \cdot 3^{4} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 2 x^{6} + 2 x^{5} - 17 x^{4} - x^{3} - 26 x^{2} + 20 x - 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 18 a + 15 + \left(19 a + 33\right)\cdot 41 + \left(3 a + 2\right)\cdot 41^{2} + \left(13 a + 17\right)\cdot 41^{3} + \left(a + 40\right)\cdot 41^{4} + \left(3 a + 6\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 16 + \left(16 a + 13\right)\cdot 41 + \left(22 a + 25\right)\cdot 41^{2} + \left(17 a + 30\right)\cdot 41^{3} + \left(28 a + 40\right)\cdot 41^{4} + \left(31 a + 25\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 28 + \left(21 a + 32\right)\cdot 41 + \left(37 a + 34\right)\cdot 41^{2} + \left(27 a + 11\right)\cdot 41^{3} + \left(39 a + 31\right)\cdot 41^{4} + \left(37 a + 14\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 29 + 5\cdot 41 + 7\cdot 41^{2} + 20\cdot 41^{3} + 13\cdot 41^{4} + 33\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 4 a + \left(31 a + 9\right)\cdot 41 + \left(40 a + 8\right)\cdot 41^{2} + \left(10 a + 21\right)\cdot 41^{3} + 24 a\cdot 41^{4} + \left(19 a + 34\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 37 a + 12 + \left(9 a + 16\right)\cdot 41 + 17\cdot 41^{2} + \left(30 a + 13\right)\cdot 41^{3} + \left(16 a + 21\right)\cdot 41^{4} + \left(21 a + 27\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 30 + 10\cdot 41 + 33\cdot 41^{2} + 29\cdot 41^{3} + 30\cdot 41^{4} + 10\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 21 a + 35 + \left(24 a + 1\right)\cdot 41 + \left(18 a + 35\right)\cdot 41^{2} + \left(23 a + 19\right)\cdot 41^{3} + \left(12 a + 26\right)\cdot 41^{4} + \left(9 a + 10\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,8)(3,5)(4,7)$
$(1,3,6,5)(2,7,8,4)$
$(1,4,3)(5,6,7)$
$(1,6)(3,7)(4,5)$
$(1,2,6,8)(3,4,5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,6)(2,8)(3,5)(4,7)$$-4$
$12$$2$$(1,6)(3,7)(4,5)$$0$
$8$$3$$(2,5,4)(3,7,8)$$1$
$6$$4$$(1,3,6,5)(2,7,8,4)$$0$
$8$$6$$(1,7,3,6,4,5)(2,8)$$-1$
$6$$8$$(1,7,8,5,6,4,2,3)$$0$
$6$$8$$(1,4,8,3,6,7,2,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.