Properties

Label 4.2e2_3e3_31e3.10t12.2
Dimension 4
Group $\PGL(2,5)$
Conductor $ 2^{2} \cdot 3^{3} \cdot 31^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PGL(2,5)$
Conductor:$3217428= 2^{2} \cdot 3^{3} \cdot 31^{3} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - x^{3} + 4 x^{2} + 3 x - 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: $ x^{2} + 108 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 44 a + 15 + \left(29 a + 49\right)\cdot 109 + \left(99 a + 77\right)\cdot 109^{2} + \left(82 a + 15\right)\cdot 109^{3} + \left(104 a + 68\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 79 + 83\cdot 109 + 63\cdot 109^{2} + 76\cdot 109^{3} + 36\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 71 + 109 + 30\cdot 109^{2} + 8\cdot 109^{3} + 103\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 70 a + 17 + \left(88 a + 15\right)\cdot 109 + \left(50 a + 23\right)\cdot 109^{2} + \left(90 a + 39\right)\cdot 109^{3} + \left(70 a + 24\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 39 a + 87 + \left(20 a + 33\right)\cdot 109 + \left(58 a + 94\right)\cdot 109^{2} + \left(18 a + 78\right)\cdot 109^{3} + \left(38 a + 4\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 65 a + 59 + \left(79 a + 34\right)\cdot 109 + \left(9 a + 38\right)\cdot 109^{2} + \left(26 a + 108\right)\cdot 109^{3} + \left(4 a + 89\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,4)(3,5)$
$(1,3,2,5,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,6)(2,4)(3,5)$ $-2$
$15$ $2$ $(1,6)(2,3)$ $0$
$20$ $3$ $(1,2,4)(3,5,6)$ $1$
$30$ $4$ $(1,3,6,2)$ $0$
$24$ $5$ $(1,4,3,2,5)$ $-1$
$20$ $6$ $(1,3,2,5,4,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.