Properties

Label 4.2e2_3e3_241e2.12t34.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{2} \cdot 3^{3} \cdot 241^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$6272748= 2^{2} \cdot 3^{3} \cdot 241^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 2 x^{4} + 5 x^{3} + 2 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 9 + 40\cdot 61 + 19\cdot 61^{3} + 56\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 55 a + 5 + 11\cdot 61 + \left(31 a + 18\right)\cdot 61^{2} + \left(34 a + 10\right)\cdot 61^{3} + \left(37 a + 34\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 + 59\cdot 61 + 14\cdot 61^{2} + 3\cdot 61^{3} + 24\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 57 a + 52 + \left(14 a + 17\right)\cdot 61 + \left(52 a + 1\right)\cdot 61^{2} + \left(25 a + 51\right)\cdot 61^{3} + \left(21 a + 17\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 60 + \left(60 a + 17\right)\cdot 61 + \left(29 a + 48\right)\cdot 61^{2} + \left(26 a + 13\right)\cdot 61^{3} + \left(23 a + 37\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 48 + \left(46 a + 36\right)\cdot 61 + \left(8 a + 38\right)\cdot 61^{2} + \left(35 a + 24\right)\cdot 61^{3} + \left(39 a + 13\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$6$ $2$ $(3,5)$ $0$
$9$ $2$ $(3,5)(4,6)$ $0$
$4$ $3$ $(1,4,6)(2,3,5)$ $1$
$4$ $3$ $(1,4,6)$ $-2$
$18$ $4$ $(1,2)(3,6,5,4)$ $0$
$12$ $6$ $(1,3,4,5,6,2)$ $1$
$12$ $6$ $(1,4,6)(3,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.