Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 a + 28 + \left(2 a + 30\right)\cdot 31 + \left(27 a + 20\right)\cdot 31^{2} + \left(25 a + 11\right)\cdot 31^{3} + \left(4 a + 5\right)\cdot 31^{4} + \left(10 a + 3\right)\cdot 31^{5} + \left(a + 26\right)\cdot 31^{6} + \left(16 a + 1\right)\cdot 31^{7} +O\left(31^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 8 a + 29 + \left(16 a + 14\right)\cdot 31 + \left(13 a + 3\right)\cdot 31^{2} + \left(16 a + 7\right)\cdot 31^{3} + \left(17 a + 10\right)\cdot 31^{4} + \left(20 a + 14\right)\cdot 31^{5} + \left(23 a + 30\right)\cdot 31^{6} + 16\cdot 31^{7} +O\left(31^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 23 a + 13 + \left(28 a + 27\right)\cdot 31 + \left(3 a + 10\right)\cdot 31^{2} + \left(5 a + 5\right)\cdot 31^{3} + \left(26 a + 20\right)\cdot 31^{4} + \left(20 a + 18\right)\cdot 31^{5} + \left(29 a + 18\right)\cdot 31^{6} + \left(14 a + 1\right)\cdot 31^{7} +O\left(31^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 20 + 7\cdot 31 + 13\cdot 31^{2} + 28\cdot 31^{3} + 22\cdot 31^{4} + 9\cdot 31^{5} + 5\cdot 31^{6} + 19\cdot 31^{7} +O\left(31^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 22 + 3\cdot 31 + 30\cdot 31^{2} + 13\cdot 31^{3} + 5\cdot 31^{4} + 9\cdot 31^{5} + 17\cdot 31^{6} + 27\cdot 31^{7} +O\left(31^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 23 a + 14 + \left(14 a + 8\right)\cdot 31 + \left(17 a + 14\right)\cdot 31^{2} + \left(14 a + 26\right)\cdot 31^{3} + \left(13 a + 28\right)\cdot 31^{4} + \left(10 a + 6\right)\cdot 31^{5} + \left(7 a + 26\right)\cdot 31^{6} + \left(30 a + 25\right)\cdot 31^{7} +O\left(31^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,3)(4,6)$ |
| $(1,5)(4,6)$ |
| $(1,4,5,6,3,2)$ |
| $(3,5)(4,6)$ |
| $(2,4)(3,5)$ |
| $(1,3)(2,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $3$ | $2$ | $(1,6)(2,5)(3,4)$ | $0$ |
| $3$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ |
| $9$ | $2$ | $(2,4)(3,5)$ | $0$ |
| $2$ | $3$ | $(1,5,3)(2,4,6)$ | $-2$ |
| $2$ | $3$ | $(1,3,5)(2,4,6)$ | $-2$ |
| $4$ | $3$ | $(2,6,4)$ | $1$ |
| $6$ | $6$ | $(1,4,5,6,3,2)$ | $0$ |
| $6$ | $6$ | $(1,6,5,4,3,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.