Properties

Label 4.2e2_3e2_11e2_17e2.6t9.1
Dimension 4
Group $S_3^2$
Conductor $ 2^{2} \cdot 3^{2} \cdot 11^{2} \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$1258884= 2^{2} \cdot 3^{2} \cdot 11^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} - 15 x^{3} + 18 x^{2} + 17 x - 68 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 12 + 20\cdot 61 + 18\cdot 61^{2} + 40\cdot 61^{3} + 35\cdot 61^{4} + 30\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 45 + \left(29 a + 46\right)\cdot 61 + \left(28 a + 21\right)\cdot 61^{2} + \left(55 a + 27\right)\cdot 61^{3} + \left(28 a + 56\right)\cdot 61^{4} + \left(29 a + 14\right)\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 49 + 20\cdot 61 + 9\cdot 61^{2} + 54\cdot 61^{3} + 3\cdot 61^{4} + 8\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 40 a + 5 + \left(31 a + 55\right)\cdot 61 + \left(32 a + 20\right)\cdot 61^{2} + \left(5 a + 54\right)\cdot 61^{3} + \left(32 a + 29\right)\cdot 61^{4} + \left(31 a + 15\right)\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 13 a + \left(13 a + 20\right)\cdot 61 + \left(5 a + 60\right)\cdot 61^{2} + \left(39 a + 16\right)\cdot 61^{3} + \left(58 a + 49\right)\cdot 61^{4} + \left(49 a + 30\right)\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 48 a + 13 + \left(47 a + 20\right)\cdot 61 + \left(55 a + 52\right)\cdot 61^{2} + \left(21 a + 50\right)\cdot 61^{3} + \left(2 a + 7\right)\cdot 61^{4} + \left(11 a + 22\right)\cdot 61^{5} +O\left(61^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(3,6)$
$(3,5,6)$
$(1,3,2,6,4,5)$
$(1,2)(3,5)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$3$ $2$ $(1,6)(2,5)(3,4)$ $0$
$3$ $2$ $(1,5)(2,6)(3,4)$ $0$
$9$ $2$ $(1,4)(3,6)$ $0$
$2$ $3$ $(1,2,4)(3,6,5)$ $-2$
$2$ $3$ $(1,2,4)(3,5,6)$ $-2$
$4$ $3$ $(1,2,4)$ $1$
$6$ $6$ $(1,3,2,6,4,5)$ $0$
$6$ $6$ $(1,6,2,3,4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.