Properties

Label 4.2e2_17e3_113e3.10t12.1c1
Dimension 4
Group $S_5$
Conductor $ 2^{2} \cdot 17^{3} \cdot 113^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$28355811844= 2^{2} \cdot 17^{3} \cdot 113^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{3} - x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.17_113.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 509 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 46 + 224\cdot 509 + 396\cdot 509^{2} + 154\cdot 509^{3} + 48\cdot 509^{4} +O\left(509^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 173 + 8\cdot 509 + 7\cdot 509^{2} + 238\cdot 509^{3} + 113\cdot 509^{4} +O\left(509^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 205 + 327\cdot 509 + 399\cdot 509^{2} + 129\cdot 509^{3} + 291\cdot 509^{4} +O\left(509^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 242 + 186\cdot 509 + 473\cdot 509^{2} + 170\cdot 509^{3} + 104\cdot 509^{4} +O\left(509^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 352 + 271\cdot 509 + 250\cdot 509^{2} + 324\cdot 509^{3} + 460\cdot 509^{4} +O\left(509^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$-2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.