Properties

Label 4.2e2_17_47e2.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{2} \cdot 17 \cdot 47^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$150212= 2^{2} \cdot 17 \cdot 47^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 5 x^{4} - 3 x^{3} + 2 x^{2} + 6 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 20 + 47\cdot 59 + 56\cdot 59^{2} + 23\cdot 59^{3} + 23\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 56 a + 29 + \left(37 a + 23\right)\cdot 59 + \left(53 a + 51\right)\cdot 59^{2} + \left(18 a + 16\right)\cdot 59^{3} + \left(32 a + 1\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 26 + \left(21 a + 5\right)\cdot 59 + \left(5 a + 8\right)\cdot 59^{2} + \left(40 a + 41\right)\cdot 59^{3} + \left(26 a + 14\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 53 a + 47 + \left(2 a + 51\right)\cdot 59 + \left(14 a + 20\right)\cdot 59^{2} + \left(34 a + 39\right)\cdot 59^{3} + \left(11 a + 40\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 41 + \left(56 a + 1\right)\cdot 59 + \left(44 a + 32\right)\cdot 59^{2} + 24 a\cdot 59^{3} + \left(47 a + 18\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 15 + 47\cdot 59 + 7\cdot 59^{2} + 55\cdot 59^{3} + 19\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,2)$
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,4)(2,5)(3,6)$ $2$
$6$ $2$ $(2,3)$ $0$
$9$ $2$ $(2,3)(5,6)$ $0$
$4$ $3$ $(1,2,3)$ $-2$
$4$ $3$ $(1,2,3)(4,5,6)$ $1$
$18$ $4$ $(1,4)(2,6,3,5)$ $0$
$12$ $6$ $(1,5,2,6,3,4)$ $-1$
$12$ $6$ $(2,3)(4,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.