Properties

Label 4.2e2_13e3_17e2.12t34.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{2} \cdot 13^{3} \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$2539732= 2^{2} \cdot 13^{3} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 3 x^{3} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 42\cdot 43 + 42\cdot 43^{2} + 9\cdot 43^{3} + 8\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 40 a + 31 + \left(7 a + 12\right)\cdot 43 + \left(9 a + 41\right)\cdot 43^{2} + \left(11 a + 1\right)\cdot 43^{3} + \left(8 a + 24\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 15 + \left(23 a + 20\right)\cdot 43 + \left(21 a + 21\right)\cdot 43^{2} + \left(8 a + 13\right)\cdot 43^{3} + \left(40 a + 35\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 28 + \left(35 a + 23\right)\cdot 43 + \left(33 a + 42\right)\cdot 43^{2} + \left(31 a + 3\right)\cdot 43^{3} + \left(34 a + 21\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 + 8\cdot 43 + 4\cdot 43^{2} + 13\cdot 43^{3} + 16\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 21 a + 37 + \left(19 a + 21\right)\cdot 43 + \left(21 a + 19\right)\cdot 43^{2} + 34 a\cdot 43^{3} + \left(2 a + 24\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,3)$
$(1,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$6$ $2$ $(3,6)$ $0$
$9$ $2$ $(3,6)(4,5)$ $0$
$4$ $3$ $(1,3,6)$ $-2$
$4$ $3$ $(1,3,6)(2,4,5)$ $1$
$18$ $4$ $(1,2)(3,5,6,4)$ $0$
$12$ $6$ $(1,4,3,5,6,2)$ $1$
$12$ $6$ $(2,4,5)(3,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.