Properties

Label 4.2e20.8t16.2
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 2^{20}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$1048576= 2^{20} $
Artin number field: Splitting field of $f= x^{8} + 4 x^{4} + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 5 + 36\cdot 113 + 81\cdot 113^{2} + 39\cdot 113^{3} + 105\cdot 113^{4} + 26\cdot 113^{5} + 22\cdot 113^{6} + 83\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 28 + 73\cdot 113 + 50\cdot 113^{2} + 100\cdot 113^{3} + 21\cdot 113^{4} + 76\cdot 113^{5} + 43\cdot 113^{6} + 12\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 32 + 63\cdot 113 + 110\cdot 113^{2} + 63\cdot 113^{3} + 68\cdot 113^{4} + 111\cdot 113^{5} + 112\cdot 113^{6} + 69\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 38 + 62\cdot 113 + 104\cdot 113^{2} + 10\cdot 113^{3} + 35\cdot 113^{4} + 15\cdot 113^{5} + 58\cdot 113^{6} + 68\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 75 + 50\cdot 113 + 8\cdot 113^{2} + 102\cdot 113^{3} + 77\cdot 113^{4} + 97\cdot 113^{5} + 54\cdot 113^{6} + 44\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 81 + 49\cdot 113 + 2\cdot 113^{2} + 49\cdot 113^{3} + 44\cdot 113^{4} + 113^{5} + 43\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 85 + 39\cdot 113 + 62\cdot 113^{2} + 12\cdot 113^{3} + 91\cdot 113^{4} + 36\cdot 113^{5} + 69\cdot 113^{6} + 100\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 108 + 76\cdot 113 + 31\cdot 113^{2} + 73\cdot 113^{3} + 7\cdot 113^{4} + 86\cdot 113^{5} + 90\cdot 113^{6} + 29\cdot 113^{7} +O\left(113^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,4,6,8,2,5,3)$
$(3,6)(4,5)$
$(1,5,8,4)(2,6,7,3)$
$(2,7)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(2,7)(3,6)$ $0$
$4$ $2$ $(3,6)(4,5)$ $0$
$4$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$2$ $4$ $(1,5,8,4)(2,6,7,3)$ $0$
$2$ $4$ $(1,5,8,4)(2,3,7,6)$ $0$
$4$ $8$ $(1,7,4,6,8,2,5,3)$ $0$
$4$ $8$ $(1,6,5,7,8,3,4,2)$ $0$
$4$ $8$ $(1,7,4,3,8,2,5,6)$ $0$
$4$ $8$ $(1,3,5,7,8,6,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.