Properties

Label 4.2e20.8t16.1c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 2^{20}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$1048576= 2^{20} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{4} + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 6 + 86\cdot 113 + 7\cdot 113^{2} + 11\cdot 113^{3} + 18\cdot 113^{4} + 53\cdot 113^{5} + 89\cdot 113^{6} + 54\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 11 + 106\cdot 113 + 10\cdot 113^{2} + 86\cdot 113^{3} + 27\cdot 113^{4} + 27\cdot 113^{5} + 88\cdot 113^{6} + 24\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 23 + 88\cdot 113 + 39\cdot 113^{2} + 42\cdot 113^{3} + 89\cdot 113^{4} + 29\cdot 113^{5} + 65\cdot 113^{6} + 106\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 52 + 61\cdot 113 + 25\cdot 113^{2} + 74\cdot 113^{3} + 113^{4} + 78\cdot 113^{5} + 9\cdot 113^{6} + 21\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 61 + 51\cdot 113 + 87\cdot 113^{2} + 38\cdot 113^{3} + 111\cdot 113^{4} + 34\cdot 113^{5} + 103\cdot 113^{6} + 91\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 90 + 24\cdot 113 + 73\cdot 113^{2} + 70\cdot 113^{3} + 23\cdot 113^{4} + 83\cdot 113^{5} + 47\cdot 113^{6} + 6\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 102 + 6\cdot 113 + 102\cdot 113^{2} + 26\cdot 113^{3} + 85\cdot 113^{4} + 85\cdot 113^{5} + 24\cdot 113^{6} + 88\cdot 113^{7} +O\left(113^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 107 + 26\cdot 113 + 105\cdot 113^{2} + 101\cdot 113^{3} + 94\cdot 113^{4} + 59\cdot 113^{5} + 23\cdot 113^{6} + 58\cdot 113^{7} +O\left(113^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,6,2,8,5,3,7)$
$(1,3,8,6)(2,4,7,5)$
$(2,7)(4,5)$
$(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(2,7)(4,5)$$0$
$4$$2$$(3,6)(4,5)$$0$
$4$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
$2$$4$$(1,3,8,6)(2,5,7,4)$$0$
$4$$8$$(1,4,6,2,8,5,3,7)$$0$
$4$$8$$(1,2,3,4,8,7,6,5)$$0$
$4$$8$$(1,4,3,2,8,5,6,7)$$0$
$4$$8$$(1,2,6,4,8,7,3,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.