Properties

Label 4.2e18_3e4.8t23.2
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{18} \cdot 3^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$21233664= 2^{18} \cdot 3^{4} $
Artin number field: Splitting field of $f= x^{8} - 12 x^{6} - 6 x^{4} + 8 x^{2} - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 9 + \left(31 a + 18\right)\cdot 43 + \left(24 a + 3\right)\cdot 43^{2} + \left(42 a + 34\right)\cdot 43^{3} + \left(21 a + 31\right)\cdot 43^{4} + \left(25 a + 19\right)\cdot 43^{5} + \left(38 a + 36\right)\cdot 43^{6} + \left(41 a + 19\right)\cdot 43^{7} + \left(34 a + 3\right)\cdot 43^{8} + \left(26 a + 4\right)\cdot 43^{9} +O\left(43^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 13 + \left(26 a + 13\right)\cdot 43 + \left(34 a + 15\right)\cdot 43^{2} + \left(19 a + 5\right)\cdot 43^{3} + \left(38 a + 28\right)\cdot 43^{4} + \left(27 a + 32\right)\cdot 43^{5} + \left(38 a + 7\right)\cdot 43^{6} + 34 a\cdot 43^{7} + \left(33 a + 12\right)\cdot 43^{8} + 15\cdot 43^{9} +O\left(43^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 33 a + 23 + \left(16 a + 29\right)\cdot 43 + \left(8 a + 23\right)\cdot 43^{2} + \left(23 a + 33\right)\cdot 43^{3} + \left(4 a + 3\right)\cdot 43^{4} + \left(15 a + 22\right)\cdot 43^{5} + \left(4 a + 18\right)\cdot 43^{6} + \left(8 a + 39\right)\cdot 43^{7} + \left(9 a + 10\right)\cdot 43^{8} + \left(42 a + 25\right)\cdot 43^{9} +O\left(43^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 26 + 4\cdot 43 + 8\cdot 43^{2} + 22\cdot 43^{3} + 38\cdot 43^{4} + 28\cdot 43^{5} + 27\cdot 43^{6} + 7\cdot 43^{7} + 20\cdot 43^{8} + 25\cdot 43^{9} +O\left(43^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 18 a + 34 + \left(11 a + 24\right)\cdot 43 + \left(18 a + 39\right)\cdot 43^{2} + 8\cdot 43^{3} + \left(21 a + 11\right)\cdot 43^{4} + \left(17 a + 23\right)\cdot 43^{5} + \left(4 a + 6\right)\cdot 43^{6} + \left(a + 23\right)\cdot 43^{7} + \left(8 a + 39\right)\cdot 43^{8} + \left(16 a + 38\right)\cdot 43^{9} +O\left(43^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 33 a + 30 + \left(16 a + 29\right)\cdot 43 + \left(8 a + 27\right)\cdot 43^{2} + \left(23 a + 37\right)\cdot 43^{3} + \left(4 a + 14\right)\cdot 43^{4} + \left(15 a + 10\right)\cdot 43^{5} + \left(4 a + 35\right)\cdot 43^{6} + \left(8 a + 42\right)\cdot 43^{7} + \left(9 a + 30\right)\cdot 43^{8} + \left(42 a + 27\right)\cdot 43^{9} +O\left(43^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 10 a + 20 + \left(26 a + 13\right)\cdot 43 + \left(34 a + 19\right)\cdot 43^{2} + \left(19 a + 9\right)\cdot 43^{3} + \left(38 a + 39\right)\cdot 43^{4} + \left(27 a + 20\right)\cdot 43^{5} + \left(38 a + 24\right)\cdot 43^{6} + \left(34 a + 3\right)\cdot 43^{7} + \left(33 a + 32\right)\cdot 43^{8} + 17\cdot 43^{9} +O\left(43^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 17 + 38\cdot 43 + 34\cdot 43^{2} + 20\cdot 43^{3} + 4\cdot 43^{4} + 14\cdot 43^{5} + 15\cdot 43^{6} + 35\cdot 43^{7} + 22\cdot 43^{8} + 17\cdot 43^{9} +O\left(43^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8)(4,5,7)$
$(1,8,5,4)(2,7,6,3)$
$(1,5)(3,4)(7,8)$
$(1,5)(2,6)(3,7)(4,8)$
$(1,7,5,3)(2,4,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $-4$
$12$ $2$ $(1,5)(3,4)(7,8)$ $0$
$8$ $3$ $(1,3,8)(4,5,7)$ $1$
$6$ $4$ $(1,8,5,4)(2,7,6,3)$ $0$
$8$ $6$ $(1,7,8,5,3,4)(2,6)$ $-1$
$6$ $8$ $(1,4,2,7,5,8,6,3)$ $0$
$6$ $8$ $(1,8,2,3,5,4,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.