Properties

Label 4.2e18_3e4.8t23.1c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{18} \cdot 3^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$21233664= 2^{18} \cdot 3^{4} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} + 6 x^{4} - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 34 + \left(27 a + 22\right)\cdot 43 + \left(a + 32\right)\cdot 43^{2} + \left(31 a + 21\right)\cdot 43^{3} + \left(23 a + 20\right)\cdot 43^{4} + \left(12 a + 17\right)\cdot 43^{5} + \left(12 a + 40\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 35 a + 4 + \left(30 a + 2\right)\cdot 43 + \left(31 a + 21\right)\cdot 43^{2} + \left(22 a + 4\right)\cdot 43^{3} + \left(42 a + 33\right)\cdot 43^{4} + \left(41 a + 21\right)\cdot 43^{5} + \left(16 a + 12\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 16 + \left(15 a + 25\right)\cdot 43 + \left(41 a + 6\right)\cdot 43^{2} + \left(11 a + 8\right)\cdot 43^{3} + \left(19 a + 13\right)\cdot 43^{4} + \left(30 a + 6\right)\cdot 43^{5} + \left(30 a + 40\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 14 + 5\cdot 43 + 23\cdot 43^{2} + 16\cdot 43^{3} + 33\cdot 43^{4} + 14\cdot 43^{5} + 14\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 18 a + 9 + \left(15 a + 20\right)\cdot 43 + \left(41 a + 10\right)\cdot 43^{2} + \left(11 a + 21\right)\cdot 43^{3} + \left(19 a + 22\right)\cdot 43^{4} + \left(30 a + 25\right)\cdot 43^{5} + \left(30 a + 2\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 39 + \left(12 a + 40\right)\cdot 43 + \left(11 a + 21\right)\cdot 43^{2} + \left(20 a + 38\right)\cdot 43^{3} + 9\cdot 43^{4} + \left(a + 21\right)\cdot 43^{5} + \left(26 a + 30\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 25 a + 27 + \left(27 a + 17\right)\cdot 43 + \left(a + 36\right)\cdot 43^{2} + \left(31 a + 34\right)\cdot 43^{3} + \left(23 a + 29\right)\cdot 43^{4} + \left(12 a + 36\right)\cdot 43^{5} + \left(12 a + 2\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 29 + 37\cdot 43 + 19\cdot 43^{2} + 26\cdot 43^{3} + 9\cdot 43^{4} + 28\cdot 43^{5} + 28\cdot 43^{6} +O\left(43^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,6)(2,5,3)$
$(1,5)(2,7)(3,6)$
$(1,8,5,4)(2,7,6,3)$
$(1,5)(2,6)(3,7)(4,8)$
$(1,7,5,3)(2,4,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-4$
$12$$2$$(1,5)(2,7)(3,6)$$0$
$8$$3$$(2,4,7)(3,6,8)$$1$
$6$$4$$(1,7,5,3)(2,4,6,8)$$0$
$8$$6$$(1,5)(2,3,4,6,7,8)$$-1$
$6$$8$$(1,2,4,3,5,6,8,7)$$0$
$6$$8$$(1,6,4,7,5,2,8,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.