Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 137 }$ to precision 8.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 31 + 105\cdot 137 + 29\cdot 137^{2} + 29\cdot 137^{3} + 45\cdot 137^{4} + 72\cdot 137^{5} + 97\cdot 137^{6} + 51\cdot 137^{7} +O\left(137^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 34 + 57\cdot 137 + 125\cdot 137^{2} + 18\cdot 137^{3} + 89\cdot 137^{4} + 111\cdot 137^{5} + 48\cdot 137^{6} + 53\cdot 137^{7} +O\left(137^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 43 + 5\cdot 137 + 10\cdot 137^{2} + 49\cdot 137^{3} + 106\cdot 137^{4} + 66\cdot 137^{5} + 82\cdot 137^{6} + 91\cdot 137^{7} +O\left(137^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 55 + 27\cdot 137 + 111\cdot 137^{2} + 131\cdot 137^{3} + 16\cdot 137^{4} + 72\cdot 137^{5} + 19\cdot 137^{6} + 108\cdot 137^{7} +O\left(137^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 82 + 109\cdot 137 + 25\cdot 137^{2} + 5\cdot 137^{3} + 120\cdot 137^{4} + 64\cdot 137^{5} + 117\cdot 137^{6} + 28\cdot 137^{7} +O\left(137^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 94 + 131\cdot 137 + 126\cdot 137^{2} + 87\cdot 137^{3} + 30\cdot 137^{4} + 70\cdot 137^{5} + 54\cdot 137^{6} + 45\cdot 137^{7} +O\left(137^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 103 + 79\cdot 137 + 11\cdot 137^{2} + 118\cdot 137^{3} + 47\cdot 137^{4} + 25\cdot 137^{5} + 88\cdot 137^{6} + 83\cdot 137^{7} +O\left(137^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 106 + 31\cdot 137 + 107\cdot 137^{2} + 107\cdot 137^{3} + 91\cdot 137^{4} + 64\cdot 137^{5} + 39\cdot 137^{6} + 85\cdot 137^{7} +O\left(137^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,3,7,6)(4,5)$ |
| $(1,7,8,2)(3,5,6,4)$ |
| $(1,4)(2,3)(5,8)(6,7)$ |
| $(2,7)(3,6)$ |
| $(1,5)(2,6)(3,7)(4,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,4)(2,3)(5,8)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(2,7)(3,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(2,6)(3,7)(5,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,3)(2,5)(4,7)(6,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,7,8,2)(3,5,6,4)$ |
$0$ |
| $4$ |
$4$ |
$(1,6,5,2)(3,4,7,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,5,6)(3,8,7,4)$ |
$0$ |
| $4$ |
$4$ |
$(2,3,7,6)(4,5)$ |
$0$ |
| $4$ |
$4$ |
$(2,6,7,3)(4,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.