Properties

Label 4.2e17_5e2.8t21.3
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{17} \cdot 5^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$3276800= 2^{17} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} + 12 x^{4} + 40 x^{2} + 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 31 + 105\cdot 137 + 29\cdot 137^{2} + 29\cdot 137^{3} + 45\cdot 137^{4} + 72\cdot 137^{5} + 97\cdot 137^{6} + 51\cdot 137^{7} +O\left(137^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 34 + 57\cdot 137 + 125\cdot 137^{2} + 18\cdot 137^{3} + 89\cdot 137^{4} + 111\cdot 137^{5} + 48\cdot 137^{6} + 53\cdot 137^{7} +O\left(137^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 43 + 5\cdot 137 + 10\cdot 137^{2} + 49\cdot 137^{3} + 106\cdot 137^{4} + 66\cdot 137^{5} + 82\cdot 137^{6} + 91\cdot 137^{7} +O\left(137^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 55 + 27\cdot 137 + 111\cdot 137^{2} + 131\cdot 137^{3} + 16\cdot 137^{4} + 72\cdot 137^{5} + 19\cdot 137^{6} + 108\cdot 137^{7} +O\left(137^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 82 + 109\cdot 137 + 25\cdot 137^{2} + 5\cdot 137^{3} + 120\cdot 137^{4} + 64\cdot 137^{5} + 117\cdot 137^{6} + 28\cdot 137^{7} +O\left(137^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 94 + 131\cdot 137 + 126\cdot 137^{2} + 87\cdot 137^{3} + 30\cdot 137^{4} + 70\cdot 137^{5} + 54\cdot 137^{6} + 45\cdot 137^{7} +O\left(137^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 103 + 79\cdot 137 + 11\cdot 137^{2} + 118\cdot 137^{3} + 47\cdot 137^{4} + 25\cdot 137^{5} + 88\cdot 137^{6} + 83\cdot 137^{7} +O\left(137^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 106 + 31\cdot 137 + 107\cdot 137^{2} + 107\cdot 137^{3} + 91\cdot 137^{4} + 64\cdot 137^{5} + 39\cdot 137^{6} + 85\cdot 137^{7} +O\left(137^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,3,7,6)(4,5)$
$(1,7,8,2)(3,5,6,4)$
$(1,4)(2,3)(5,8)(6,7)$
$(2,7)(3,6)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $2$ $(2,7)(3,6)$ $0$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$4$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$4$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$
$4$ $4$ $(1,6,5,2)(3,4,7,8)$ $0$
$4$ $4$ $(1,2,5,6)(3,8,7,4)$ $0$
$4$ $4$ $(2,3,7,6)(4,5)$ $0$
$4$ $4$ $(2,6,7,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.