Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 313 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 63 + 87\cdot 313 + 109\cdot 313^{2} + 209\cdot 313^{3} + 153\cdot 313^{4} + 74\cdot 313^{5} + 145\cdot 313^{6} +O\left(313^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 122 + 134\cdot 313 + 60\cdot 313^{2} + 174\cdot 313^{3} + 36\cdot 313^{4} + 23\cdot 313^{5} + 186\cdot 313^{6} +O\left(313^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 140 + 120\cdot 313 + 34\cdot 313^{2} + 12\cdot 313^{3} + 2\cdot 313^{4} + 128\cdot 313^{5} + 143\cdot 313^{6} +O\left(313^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 145 + 74\cdot 313 + 97\cdot 313^{2} + 62\cdot 313^{3} + 243\cdot 313^{4} + 83\cdot 313^{5} + 99\cdot 313^{6} +O\left(313^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 168 + 238\cdot 313 + 215\cdot 313^{2} + 250\cdot 313^{3} + 69\cdot 313^{4} + 229\cdot 313^{5} + 213\cdot 313^{6} +O\left(313^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 173 + 192\cdot 313 + 278\cdot 313^{2} + 300\cdot 313^{3} + 310\cdot 313^{4} + 184\cdot 313^{5} + 169\cdot 313^{6} +O\left(313^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 191 + 178\cdot 313 + 252\cdot 313^{2} + 138\cdot 313^{3} + 276\cdot 313^{4} + 289\cdot 313^{5} + 126\cdot 313^{6} +O\left(313^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 250 + 225\cdot 313 + 203\cdot 313^{2} + 103\cdot 313^{3} + 159\cdot 313^{4} + 238\cdot 313^{5} + 167\cdot 313^{6} +O\left(313^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3,4,2)(5,7,8,6)$ |
| $(1,5)(2,3)(4,8)(6,7)$ |
| $(1,8)(4,5)$ |
| $(1,4)(2,6)(3,7)(5,8)$ |
| $(1,4,8,5)(2,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-4$ |
| $2$ | $2$ | $(1,4)(2,3)(5,8)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,3)(4,8)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,8)(4,5)$ | $0$ |
| $4$ | $2$ | $(1,3)(2,5)(4,7)(6,8)$ | $0$ |
| $4$ | $4$ | $(1,3,4,2)(5,7,8,6)$ | $0$ |
| $4$ | $4$ | $(1,2,4,3)(5,6,8,7)$ | $0$ |
| $4$ | $4$ | $(1,3,8,6)(2,4,7,5)$ | $0$ |
| $4$ | $4$ | $(1,4,8,5)(2,7)$ | $0$ |
| $4$ | $4$ | $(1,5,8,4)(2,7)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.