Properties

Label 4.2e17_5e2.8t21.2c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{17} \cdot 5^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$3276800= 2^{17} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 8 x^{6} + 12 x^{4} + 20 x^{2} + 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.2e3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 313 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 63 + 87\cdot 313 + 109\cdot 313^{2} + 209\cdot 313^{3} + 153\cdot 313^{4} + 74\cdot 313^{5} + 145\cdot 313^{6} +O\left(313^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 122 + 134\cdot 313 + 60\cdot 313^{2} + 174\cdot 313^{3} + 36\cdot 313^{4} + 23\cdot 313^{5} + 186\cdot 313^{6} +O\left(313^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 140 + 120\cdot 313 + 34\cdot 313^{2} + 12\cdot 313^{3} + 2\cdot 313^{4} + 128\cdot 313^{5} + 143\cdot 313^{6} +O\left(313^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 145 + 74\cdot 313 + 97\cdot 313^{2} + 62\cdot 313^{3} + 243\cdot 313^{4} + 83\cdot 313^{5} + 99\cdot 313^{6} +O\left(313^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 168 + 238\cdot 313 + 215\cdot 313^{2} + 250\cdot 313^{3} + 69\cdot 313^{4} + 229\cdot 313^{5} + 213\cdot 313^{6} +O\left(313^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 173 + 192\cdot 313 + 278\cdot 313^{2} + 300\cdot 313^{3} + 310\cdot 313^{4} + 184\cdot 313^{5} + 169\cdot 313^{6} +O\left(313^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 191 + 178\cdot 313 + 252\cdot 313^{2} + 138\cdot 313^{3} + 276\cdot 313^{4} + 289\cdot 313^{5} + 126\cdot 313^{6} +O\left(313^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 250 + 225\cdot 313 + 203\cdot 313^{2} + 103\cdot 313^{3} + 159\cdot 313^{4} + 238\cdot 313^{5} + 167\cdot 313^{6} +O\left(313^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,2)(5,7,8,6)$
$(1,5)(2,3)(4,8)(6,7)$
$(1,8)(4,5)$
$(1,4)(2,6)(3,7)(5,8)$
$(1,4,8,5)(2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$2$$(1,5)(2,3)(4,8)(6,7)$$0$
$2$$2$$(1,8)(4,5)$$0$
$4$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$4$$4$$(1,3,4,2)(5,7,8,6)$$0$
$4$$4$$(1,2,4,3)(5,6,8,7)$$0$
$4$$4$$(1,3,8,6)(2,4,7,5)$$0$
$4$$4$$(1,4,8,5)(2,7)$$0$
$4$$4$$(1,5,8,4)(2,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.