Properties

Label 4.2e17_3e4.8t21.2c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{17} \cdot 3^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$10616832= 2^{17} \cdot 3^{4} $
Artin number field: Splitting field of $f= x^{8} + 36 x^{4} - 108 x^{2} + 81 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.2e3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 12 + 49\cdot 113 + 72\cdot 113^{2} + 110\cdot 113^{3} + 5\cdot 113^{4} + 60\cdot 113^{5} + 14\cdot 113^{6} + 18\cdot 113^{7} + 104\cdot 113^{8} +O\left(113^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 15 + 88\cdot 113 + 70\cdot 113^{2} + 51\cdot 113^{3} + 37\cdot 113^{4} + 81\cdot 113^{5} + 34\cdot 113^{6} + 68\cdot 113^{7} + 61\cdot 113^{8} +O\left(113^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 52 + 18\cdot 113 + 86\cdot 113^{2} + 66\cdot 113^{3} + 14\cdot 113^{4} + 77\cdot 113^{5} + 69\cdot 113^{6} + 50\cdot 113^{7} + 10\cdot 113^{8} +O\left(113^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 54 + 86\cdot 113 + 52\cdot 113^{2} + 102\cdot 113^{3} + 84\cdot 113^{4} + 62\cdot 113^{5} + 88\cdot 113^{6} + 65\cdot 113^{7} + 30\cdot 113^{8} +O\left(113^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 59 + 26\cdot 113 + 60\cdot 113^{2} + 10\cdot 113^{3} + 28\cdot 113^{4} + 50\cdot 113^{5} + 24\cdot 113^{6} + 47\cdot 113^{7} + 82\cdot 113^{8} +O\left(113^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 61 + 94\cdot 113 + 26\cdot 113^{2} + 46\cdot 113^{3} + 98\cdot 113^{4} + 35\cdot 113^{5} + 43\cdot 113^{6} + 62\cdot 113^{7} + 102\cdot 113^{8} +O\left(113^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 98 + 24\cdot 113 + 42\cdot 113^{2} + 61\cdot 113^{3} + 75\cdot 113^{4} + 31\cdot 113^{5} + 78\cdot 113^{6} + 44\cdot 113^{7} + 51\cdot 113^{8} +O\left(113^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 101 + 63\cdot 113 + 40\cdot 113^{2} + 2\cdot 113^{3} + 107\cdot 113^{4} + 52\cdot 113^{5} + 98\cdot 113^{6} + 94\cdot 113^{7} + 8\cdot 113^{8} +O\left(113^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(2,7)(4,5)$
$(1,4,8,5)(2,3,7,6)$
$(1,4,3,2)(5,6,7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(2,7)(4,5)$$0$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$4$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$4$$4$$(1,4,3,2)(5,6,7,8)$$0$
$4$$4$$(1,2,3,4)(5,8,7,6)$$0$
$4$$4$$(1,5,8,4)(2,6,7,3)$$0$
$4$$4$$(2,4,7,5)(3,6)$$0$
$4$$4$$(2,5,7,4)(3,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.