Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 233 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 + 149\cdot 233 + 80\cdot 233^{2} + 56\cdot 233^{3} + 134\cdot 233^{4} + 149\cdot 233^{5} + 82\cdot 233^{6} +O\left(233^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 38 + 145\cdot 233 + 199\cdot 233^{2} + 191\cdot 233^{3} + 16\cdot 233^{4} + 223\cdot 233^{5} + 166\cdot 233^{6} +O\left(233^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 82 + 103\cdot 233 + 206\cdot 233^{2} + 56\cdot 233^{3} + 94\cdot 233^{4} + 119\cdot 233^{5} + 8\cdot 233^{6} +O\left(233^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 96 + 148\cdot 233 + 26\cdot 233^{2} + 121\cdot 233^{3} + 155\cdot 233^{4} + 51\cdot 233^{5} + 175\cdot 233^{6} +O\left(233^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 150 + 167\cdot 233 + 104\cdot 233^{2} + 114\cdot 233^{3} + 184\cdot 233^{4} + 85\cdot 233^{5} + 19\cdot 233^{6} +O\left(233^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 152 + 197\cdot 233 + 224\cdot 233^{2} + 160\cdot 233^{3} + 152\cdot 233^{4} + 174\cdot 233^{5} + 110\cdot 233^{6} +O\left(233^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 194 + 19\cdot 233 + 68\cdot 233^{2} + 56\cdot 233^{3} + 202\cdot 233^{4} + 181\cdot 233^{5} + 179\cdot 233^{6} +O\left(233^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 217 + 21\cdot 233^{2} + 174\cdot 233^{3} + 224\cdot 233^{4} + 178\cdot 233^{5} + 188\cdot 233^{6} +O\left(233^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8,4,5)(2,6)$ |
| $(1,4)(5,8)$ |
| $(1,2,4,6)(3,8,7,5)$ |
| $(1,8)(2,3)(4,5)(6,7)$ |
| $(1,4)(2,6)(3,7)(5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,4)(2,6)(3,7)(5,8)$ |
$-4$ |
| $2$ |
$2$ |
$(1,8)(2,3)(4,5)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,3)(4,8)(6,7)$ |
$0$ |
| $4$ |
$2$ |
$(1,3)(2,5)(4,7)(6,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,4,6)(3,8,7,5)$ |
$0$ |
| $4$ |
$4$ |
$(1,6,8,7)(2,5,3,4)$ |
$0$ |
| $4$ |
$4$ |
$(1,7,8,6)(2,4,3,5)$ |
$0$ |
| $4$ |
$4$ |
$(1,8,4,5)(2,6)$ |
$0$ |
| $4$ |
$4$ |
$(1,5,4,8)(2,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.