Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 89 }$ to precision 8.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 + 73\cdot 89 + 16\cdot 89^{3} + 18\cdot 89^{4} + 13\cdot 89^{6} + 45\cdot 89^{7} +O\left(89^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 13 + 73\cdot 89 + 56\cdot 89^{2} + 5\cdot 89^{3} + 28\cdot 89^{4} + 16\cdot 89^{5} + 80\cdot 89^{6} + 14\cdot 89^{7} +O\left(89^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 14 + 9\cdot 89 + 49\cdot 89^{2} + 52\cdot 89^{3} + 67\cdot 89^{4} + 71\cdot 89^{5} + 48\cdot 89^{6} + 38\cdot 89^{7} +O\left(89^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 27 + 70\cdot 89 + 33\cdot 89^{2} + 41\cdot 89^{3} + 42\cdot 89^{4} + 88\cdot 89^{5} + 89^{6} + 89^{7} +O\left(89^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 63 + 32\cdot 89 + 52\cdot 89^{2} + 54\cdot 89^{3} + 14\cdot 89^{4} + 61\cdot 89^{5} + 36\cdot 89^{6} + 68\cdot 89^{7} +O\left(89^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 75 + 89 + 35\cdot 89^{2} + 76\cdot 89^{3} + 3\cdot 89^{4} + 12\cdot 89^{5} + 59\cdot 89^{6} + 4\cdot 89^{7} +O\left(89^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 78 + 4\cdot 89 + 2\cdot 89^{2} + 49\cdot 89^{3} + 77\cdot 89^{4} + 10\cdot 89^{5} + 84\cdot 89^{6} + 22\cdot 89^{7} +O\left(89^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 82 + 89 + 37\cdot 89^{2} + 60\cdot 89^{3} + 14\cdot 89^{4} + 6\cdot 89^{5} + 32\cdot 89^{6} + 71\cdot 89^{7} +O\left(89^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,6,8,4)(2,7,5,3)$ |
| $(2,5)(4,6)$ |
| $(1,7)(2,6)(3,8)(4,5)$ |
| $(1,8)(2,5)(3,7)(4,6)$ |
| $(1,4,7,5)(2,8,6,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,5)(3,7)(4,6)$ |
$-4$ |
| $2$ |
$2$ |
$(1,7)(2,6)(3,8)(4,5)$ |
$0$ |
| $2$ |
$2$ |
$(2,5)(4,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,4)(3,8)(5,6)$ |
$0$ |
| $4$ |
$2$ |
$(1,2)(3,6)(4,7)(5,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,7,5)(2,8,6,3)$ |
$0$ |
| $4$ |
$4$ |
$(1,5,7,4)(2,3,6,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,8,6)(2,3,5,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,8)(2,4,5,6)$ |
$0$ |
| $4$ |
$4$ |
$(1,8)(2,6,5,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.