Properties

Label 4.2e17_3e2.8t21.3c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{17} \cdot 3^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$1179648= 2^{17} \cdot 3^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} + 20 x^{4} - 8 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.2e3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 8 + 2\cdot 89 + 12\cdot 89^{2} + 84\cdot 89^{3} + 67\cdot 89^{4} + 76\cdot 89^{5} + 40\cdot 89^{6} + 75\cdot 89^{7} + 62\cdot 89^{8} +O\left(89^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 22 + 20\cdot 89 + 42\cdot 89^{2} + 20\cdot 89^{3} + 63\cdot 89^{4} + 4\cdot 89^{5} + 28\cdot 89^{6} + 73\cdot 89^{7} + 81\cdot 89^{8} +O\left(89^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 30 + 74\cdot 89 + 66\cdot 89^{2} + 7\cdot 89^{3} + 39\cdot 89^{4} + 58\cdot 89^{5} + 64\cdot 89^{6} + 32\cdot 89^{7} + 18\cdot 89^{8} +O\left(89^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 43 + 46\cdot 89 + 13\cdot 89^{2} + 7\cdot 89^{3} + 13\cdot 89^{4} + 72\cdot 89^{5} + 17\cdot 89^{6} + 67\cdot 89^{7} + 67\cdot 89^{8} +O\left(89^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 46 + 42\cdot 89 + 75\cdot 89^{2} + 81\cdot 89^{3} + 75\cdot 89^{4} + 16\cdot 89^{5} + 71\cdot 89^{6} + 21\cdot 89^{7} + 21\cdot 89^{8} +O\left(89^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 59 + 14\cdot 89 + 22\cdot 89^{2} + 81\cdot 89^{3} + 49\cdot 89^{4} + 30\cdot 89^{5} + 24\cdot 89^{6} + 56\cdot 89^{7} + 70\cdot 89^{8} +O\left(89^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 67 + 68\cdot 89 + 46\cdot 89^{2} + 68\cdot 89^{3} + 25\cdot 89^{4} + 84\cdot 89^{5} + 60\cdot 89^{6} + 15\cdot 89^{7} + 7\cdot 89^{8} +O\left(89^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 81 + 86\cdot 89 + 76\cdot 89^{2} + 4\cdot 89^{3} + 21\cdot 89^{4} + 12\cdot 89^{5} + 48\cdot 89^{6} + 13\cdot 89^{7} + 26\cdot 89^{8} +O\left(89^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,5,8,4)(3,6)$
$(1,4)(2,3)(5,8)(6,7)$
$(1,8)(4,5)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$2$$2$$(2,7)(3,6)$$0$
$4$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$4$$4$$(1,6,4,2)(3,5,7,8)$$0$
$4$$4$$(1,2,4,6)(3,8,7,5)$$0$
$4$$4$$(1,3,8,6)(2,5,7,4)$$0$
$4$$4$$(2,6,7,3)(4,5)$$0$
$4$$4$$(2,3,7,6)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.