Properties

Label 4.2e17_13e2.8t21.2c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{17} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$22151168= 2^{17} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 12 x^{6} + 28 x^{4} + 104 x^{2} + 169 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.2e3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 113 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 6 + 95\cdot 113 + 33\cdot 113^{2} + 87\cdot 113^{3} + 34\cdot 113^{4} + 72\cdot 113^{5} + 54\cdot 113^{6} + 21\cdot 113^{7} + 51\cdot 113^{8} +O\left(113^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 9 + 29\cdot 113 + 9\cdot 113^{2} + 22\cdot 113^{3} + 41\cdot 113^{4} + 30\cdot 113^{5} + 29\cdot 113^{6} + 98\cdot 113^{7} + 70\cdot 113^{8} +O\left(113^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 16 + 58\cdot 113 + 58\cdot 113^{2} + 88\cdot 113^{3} + 109\cdot 113^{4} + 108\cdot 113^{5} + 5\cdot 113^{6} + 48\cdot 113^{7} + 51\cdot 113^{8} +O\left(113^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 54 + 54\cdot 113 + 90\cdot 113^{2} + 35\cdot 113^{3} + 105\cdot 113^{4} + 82\cdot 113^{5} + 25\cdot 113^{6} + 65\cdot 113^{7} + 109\cdot 113^{8} +O\left(113^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 59 + 58\cdot 113 + 22\cdot 113^{2} + 77\cdot 113^{3} + 7\cdot 113^{4} + 30\cdot 113^{5} + 87\cdot 113^{6} + 47\cdot 113^{7} + 3\cdot 113^{8} +O\left(113^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 97 + 54\cdot 113 + 54\cdot 113^{2} + 24\cdot 113^{3} + 3\cdot 113^{4} + 4\cdot 113^{5} + 107\cdot 113^{6} + 64\cdot 113^{7} + 61\cdot 113^{8} +O\left(113^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 104 + 83\cdot 113 + 103\cdot 113^{2} + 90\cdot 113^{3} + 71\cdot 113^{4} + 82\cdot 113^{5} + 83\cdot 113^{6} + 14\cdot 113^{7} + 42\cdot 113^{8} +O\left(113^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 107 + 17\cdot 113 + 79\cdot 113^{2} + 25\cdot 113^{3} + 78\cdot 113^{4} + 40\cdot 113^{5} + 58\cdot 113^{6} + 91\cdot 113^{7} + 61\cdot 113^{8} +O\left(113^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,5)(2,3)(4,8)(6,7)$
$(2,7)(4,5)$
$(1,6)(2,5)(3,8)(4,7)$
$(1,4,3,2)(5,6,7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(2,7)(4,5)$$0$
$2$$2$$(1,6)(2,4)(3,8)(5,7)$$0$
$4$$2$$(1,5)(2,3)(4,8)(6,7)$$0$
$4$$4$$(1,4,3,2)(5,6,7,8)$$0$
$4$$4$$(1,2,3,4)(5,8,7,6)$$0$
$4$$4$$(1,8)(2,4,7,5)$$0$
$4$$4$$(1,8)(2,5,7,4)$$0$
$4$$4$$(1,7,8,2)(3,4,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.