Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 337 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 100 + 162\cdot 337 + 242\cdot 337^{2} + 116\cdot 337^{3} + 212\cdot 337^{4} + 282\cdot 337^{5} +O\left(337^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 109 + 15\cdot 337 + 291\cdot 337^{2} + 235\cdot 337^{3} + 107\cdot 337^{4} + 67\cdot 337^{5} +O\left(337^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 139 + 8\cdot 337 + 217\cdot 337^{2} + 73\cdot 337^{4} + 166\cdot 337^{5} +O\left(337^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 168 + 19\cdot 337 + 23\cdot 337^{2} + 50\cdot 337^{3} + 104\cdot 337^{4} + 205\cdot 337^{5} +O\left(337^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 169 + 317\cdot 337 + 313\cdot 337^{2} + 286\cdot 337^{3} + 232\cdot 337^{4} + 131\cdot 337^{5} +O\left(337^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 198 + 328\cdot 337 + 119\cdot 337^{2} + 336\cdot 337^{3} + 263\cdot 337^{4} + 170\cdot 337^{5} +O\left(337^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 228 + 321\cdot 337 + 45\cdot 337^{2} + 101\cdot 337^{3} + 229\cdot 337^{4} + 269\cdot 337^{5} +O\left(337^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 237 + 174\cdot 337 + 94\cdot 337^{2} + 220\cdot 337^{3} + 124\cdot 337^{4} + 54\cdot 337^{5} +O\left(337^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(3,6)(4,5)$ |
| $(1,2,8,7)(3,5,6,4)$ |
| $(1,3,8,6)(2,4)(5,7)$ |
| $(2,7)(3,6)$ |
| $(1,8)(3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,8)(3,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(4,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,7)$ |
$0$ |
| $4$ |
$2$ |
$(1,2)(3,5)(4,6)(7,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,8,7)(3,5,6,4)$ |
$0$ |
| $4$ |
$4$ |
$(1,3,8,6)(2,4)(5,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,6,8,3)(2,4)(5,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,8,5)(2,6)(3,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,5,8,4)(2,6)(3,7)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.