Properties

Label 4.2e17.8t21.4
Dimension 4
Group $C_2^3: C_4$
Conductor $ 2^{17}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3: C_4$
Conductor:$131072= 2^{17} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} + 6 x^{4} - 4 x^{2} + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 337 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 100 + 162\cdot 337 + 242\cdot 337^{2} + 116\cdot 337^{3} + 212\cdot 337^{4} + 282\cdot 337^{5} +O\left(337^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 109 + 15\cdot 337 + 291\cdot 337^{2} + 235\cdot 337^{3} + 107\cdot 337^{4} + 67\cdot 337^{5} +O\left(337^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 139 + 8\cdot 337 + 217\cdot 337^{2} + 73\cdot 337^{4} + 166\cdot 337^{5} +O\left(337^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 168 + 19\cdot 337 + 23\cdot 337^{2} + 50\cdot 337^{3} + 104\cdot 337^{4} + 205\cdot 337^{5} +O\left(337^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 169 + 317\cdot 337 + 313\cdot 337^{2} + 286\cdot 337^{3} + 232\cdot 337^{4} + 131\cdot 337^{5} +O\left(337^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 198 + 328\cdot 337 + 119\cdot 337^{2} + 336\cdot 337^{3} + 263\cdot 337^{4} + 170\cdot 337^{5} +O\left(337^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 228 + 321\cdot 337 + 45\cdot 337^{2} + 101\cdot 337^{3} + 229\cdot 337^{4} + 269\cdot 337^{5} +O\left(337^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 237 + 174\cdot 337 + 94\cdot 337^{2} + 220\cdot 337^{3} + 124\cdot 337^{4} + 54\cdot 337^{5} +O\left(337^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,6)(4,5)$
$(1,2,8,7)(3,5,6,4)$
$(1,3,8,6)(2,4)(5,7)$
$(2,7)(3,6)$
$(1,8)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,8)(3,6)$ $0$
$2$ $2$ $(1,8)(4,5)$ $0$
$2$ $2$ $(1,8)(2,7)$ $0$
$4$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$4$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$
$4$ $4$ $(1,3,8,6)(2,4)(5,7)$ $0$
$4$ $4$ $(1,6,8,3)(2,4)(5,7)$ $0$
$4$ $4$ $(1,4,8,5)(2,6)(3,7)$ $0$
$4$ $4$ $(1,5,8,4)(2,6)(3,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.