Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 337 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 46 + 67\cdot 337 + 228\cdot 337^{2} + 59\cdot 337^{3} + 135\cdot 337^{4} + 21\cdot 337^{5} + 179\cdot 337^{6} +O\left(337^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 89 + 236\cdot 337 + 82\cdot 337^{2} + 40\cdot 337^{3} + 18\cdot 337^{4} + 51\cdot 337^{5} + 68\cdot 337^{6} +O\left(337^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 93 + 55\cdot 337 + 285\cdot 337^{2} + 10\cdot 337^{3} + 17\cdot 337^{4} + 84\cdot 337^{5} + 333\cdot 337^{6} +O\left(337^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 114 + 110\cdot 337 + 297\cdot 337^{2} + 214\cdot 337^{3} + 81\cdot 337^{4} + 327\cdot 337^{5} + 279\cdot 337^{6} +O\left(337^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 223 + 226\cdot 337 + 39\cdot 337^{2} + 122\cdot 337^{3} + 255\cdot 337^{4} + 9\cdot 337^{5} + 57\cdot 337^{6} +O\left(337^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 244 + 281\cdot 337 + 51\cdot 337^{2} + 326\cdot 337^{3} + 319\cdot 337^{4} + 252\cdot 337^{5} + 3\cdot 337^{6} +O\left(337^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 248 + 100\cdot 337 + 254\cdot 337^{2} + 296\cdot 337^{3} + 318\cdot 337^{4} + 285\cdot 337^{5} + 268\cdot 337^{6} +O\left(337^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 291 + 269\cdot 337 + 108\cdot 337^{2} + 277\cdot 337^{3} + 201\cdot 337^{4} + 315\cdot 337^{5} + 157\cdot 337^{6} +O\left(337^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,5,8,4)(2,7)$ |
| $(1,8)(4,5)$ |
| $(1,5)(2,6)(3,7)(4,8)$ |
| $(1,7,5,3)(2,4,6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,5)(2,6)(3,7)(4,8)$ |
$0$ |
| $2$ |
$2$ |
$(2,7)(3,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,3)(4,8)(6,7)$ |
$0$ |
| $4$ |
$2$ |
$(1,3)(2,5)(4,7)(6,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,7,5,3)(2,4,6,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,3,5,7)(2,8,6,4)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,8,7)(3,4,6,5)$ |
$0$ |
| $4$ |
$4$ |
$(1,8)(2,6,7,3)$ |
$0$ |
| $4$ |
$4$ |
$(1,8)(2,3,7,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.